skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring the grand-canonical phase diagram of interacting bosons in optical lattices by trap squeezing

Journal Article · · Physical Review. A
 [1]
  1. Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Superieure de Lyon, Universite de Lyon, 46 Allee d'Italie, Lyon, F-69364 (France)

In this article, we theoretically discuss how quantum simulators based on trapped cold bosons in optical lattices can explore the grand-canonical phase diagram of homogeneous lattice boson models, via control of the trapping potential independent of all other experimental parameters (trap squeezing). Based on quantum Monte Carlo, we establish the general scaling relation linking the global chemical potential to the Hamiltonian parameters for the Bose-Hubbard model in a parabolic trap, describing cold bosons in optical lattices; we find that this scaling relation is well captured by a modified Thomas-Fermi scaling behavior - corrected for quantum fluctuations - in the case of sufficiently high density and/or sufficiently weak interactions, and by a mean-field Gutzwiller ansatz over a much larger parameter range. This scaling relation allows us to control experimentally the chemical potential, independent of all other Hamiltonian parameters, via trap squeezing; given that the global chemical potential coincides with the local chemical potential in the trap center, measurements of the central density as a function of the chemical potential give access to the information on the bulk compressibility of the Bose-Hubbard model. Supplemented with time-of-flight measurements of the coherence properties, the measurement of compressibility enables one to discern among the various possible phases realized by bosons in an optical lattice with or without external (periodic or random) potentials - for example, superfluid, Mott insulator, band insulator, and Bose glass. We theoretically demonstrate the trap-squeezing investigation of these phases in the case of bosons in a one-dimensional optical lattice and in a one-dimensional incommensurate superlattice.

OSTI ID:
21456942
Journal Information:
Physical Review. A, Vol. 82, Issue 2; Other Information: DOI: 10.1103/PhysRevA.82.023601; (c) 2010 The American Physical Society; ISSN 1050-2947
Country of Publication:
United States
Language:
English