Kauffman knot polynomials in classical abelian Chern-Simons field theory
Journal Article
·
· Annals of Physics (New York)
OSTI ID:21452968
Kauffman knot polynomial invariants are discovered in classical abelian Chern-Simons field theory. A topological invariant t{sup I(L)} is constructed for a link L, where I is the abelian Chern-Simons action and t a formal constant. For oriented knotted vortex lines, t{sup I} satisfies the skein relations of the Kauffman R-polynomial; for un-oriented knotted lines, t{sup I} satisfies the skein relations of the Kauffman bracket polynomial. As an example the bracket polynomials of trefoil knots are computed, and the Jones polynomial is constructed from the bracket polynomial.
- OSTI ID:
- 21452968
- Journal Information:
- Annals of Physics (New York), Journal Name: Annals of Physics (New York) Journal Issue: 12 Vol. 325; ISSN 0003-4916; ISSN APNYA6
- Country of Publication:
- United States
- Language:
- English
Similar Records
Chern-Simons theory and Kauffman polynomials
Kauffman knot invariant from SO(N) or Sp(N) Chern-Simons theory and the Potts model
Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots
Journal Article
·
Mon Mar 19 23:00:00 EST 1990
· International Journal of Modern Physics A; (USA)
·
OSTI ID:6587018
Kauffman knot invariant from SO(N) or Sp(N) Chern-Simons theory and the Potts model
Journal Article
·
Tue Jun 15 00:00:00 EDT 2010
· Physical Review. D, Particles Fields
·
OSTI ID:21408116
Explicit formulae for Chern-Simons invariants of the twist-knot orbifolds and edge polynomials of twist knots
Journal Article
·
Thu Sep 01 00:00:00 EDT 2016
· Sbornik. Mathematics
·
OSTI ID:22875596