THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. II. SYNCHROTRON EMISSION AS A STAR FORMATION TRACER IN HIGH-REDSHIFT GALAXIES
Journal Article
·
· Astrophysical Journal
We construct one-zone steady-state models of cosmic ray (CR) injection, cooling, and escape over the entire dynamic range of the FIR-radio correlation (FRC), from normal galaxies to starbursts, over the redshift interval 0 {<=} z {<=} 10. Normal galaxies with low star formation rates become radio faint at high z, because inverse Compton (IC) losses off the cosmic microwave background (CMB) cool CR electrons and positrons rapidly, suppressing their nonthermal radio emission. However, we find that this effect occurs at higher redshifts than previously expected, because escape, bremsstrahlung, ionization, and starlight IC losses act to counter this effect and preserve the radio luminosity of galaxies. The radio dimming of star-forming galaxies at high z is not just a simple competition between magnetic field energy density and the CMB energy density; the CMB must also compete with every other loss process. We predict relations for the critical redshift when radio emission is significantly suppressed compared to the z {approx} 0 FRC as a function of star formation rate per unit area. For example, a MilkyWay like spiral becomes radio faint at z {approx} 2, while an M82-like starburst does not become radio faint until z {approx} 10-20. We show that the 'buffering' effect of non-synchrotron losses improves the detectability of star-forming galaxies in synchrotron radio emission with Expanded Very Large Array and Square Kilometer Array. Additionally, we provide a quantitative explanation for the relative radio brightness of some high-z submillimeter galaxies. We show that at fixed star formation rate surface density, galaxies with larger CR scale heights are radio bright with respect to the FRC, because of weaker bremsstrahlung and ionization losses compared to compact starbursts. We predict that these 'puffy starbursts' should have steeper radio spectra than compact galaxies with the same star formation rate surface density. We find that radio-bright submillimeter galaxies alone cannot explain the excess radio emission reported by ARCADE2, but they may significantly enhance the diffuse radio background with respect to a naive application of the z {approx} 0 FRC.
- OSTI ID:
- 21452886
- Journal Information:
- Astrophysical Journal, Journal Name: Astrophysical Journal Journal Issue: 1 Vol. 717; ISSN ASJOAB; ISSN 0004-637X
- Country of Publication:
- United States
- Language:
- English
Similar Records
THE PHYSICS OF THE FAR-INFRARED-RADIO CORRELATION. I. CALORIMETRY, CONSPIRACY, AND IMPLICATIONS
THE FAR-INFRARED-RADIO CORRELATION AT HIGH REDSHIFTS: PHYSICAL CONSIDERATIONS AND PROSPECTS FOR THE SQUARE KILOMETER ARRAY
FAR-INFRARED AND MOLECULAR CO EMISSION FROM THE HOST GALAXIES OF FAINT QUASARS AT z {approx} 6
Journal Article
·
Thu Jul 01 00:00:00 EDT 2010
· Astrophysical Journal
·
OSTI ID:21452899
THE FAR-INFRARED-RADIO CORRELATION AT HIGH REDSHIFTS: PHYSICAL CONSIDERATIONS AND PROSPECTS FOR THE SQUARE KILOMETER ARRAY
Journal Article
·
Thu Nov 19 23:00:00 EST 2009
· Astrophysical Journal
·
OSTI ID:21378175
FAR-INFRARED AND MOLECULAR CO EMISSION FROM THE HOST GALAXIES OF FAINT QUASARS AT z {approx} 6
Journal Article
·
Sat Oct 15 00:00:00 EDT 2011
· Astronomical Journal (New York, N.Y. Online)
·
OSTI ID:21582850
Related Subjects
79 ASTRONOMY AND ASTROPHYSICS
ANTILEPTONS
ANTIMATTER
ANTIPARTICLES
BREMSSTRAHLUNG
BRIGHTNESS
COSMIC RADIATION
ELECTROMAGNETIC RADIATION
ELEMENTARY PARTICLES
EMISSION
ENERGY DENSITY
EVOLUTION
FERMIONS
GALACTIC EVOLUTION
GALAXIES
IONIZATION
IONIZING RADIATIONS
LEPTONS
LUMINOSITY
MAGNETIC FIELDS
MATTER
MICROWAVE RADIATION
OPTICAL PROPERTIES
PHYSICAL PROPERTIES
POSITRONS
RADIATIONS
RED SHIFT
RELICT RADIATION
STARS
STEADY-STATE CONDITIONS
ANTILEPTONS
ANTIMATTER
ANTIPARTICLES
BREMSSTRAHLUNG
BRIGHTNESS
COSMIC RADIATION
ELECTROMAGNETIC RADIATION
ELEMENTARY PARTICLES
EMISSION
ENERGY DENSITY
EVOLUTION
FERMIONS
GALACTIC EVOLUTION
GALAXIES
IONIZATION
IONIZING RADIATIONS
LEPTONS
LUMINOSITY
MAGNETIC FIELDS
MATTER
MICROWAVE RADIATION
OPTICAL PROPERTIES
PHYSICAL PROPERTIES
POSITRONS
RADIATIONS
RED SHIFT
RELICT RADIATION
STARS
STEADY-STATE CONDITIONS