skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adiabatic condition and the quantum hitting time of Markov chains

Journal Article · · Physical Review. A
 [1];  [1];  [1]
  1. NEC Laboratories America, Inc., Princeton, New Jersey 08540 (United States)

We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) P on a graph with a set of unknown marked vertices, one can define a related absorbing walk P{sup '} where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s) from the interpolated Markov chain P(s)=(1-s)P+sP{sup '} and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that, for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speedup for state-transitive reversible Markov chains with a unique marked vertex.

OSTI ID:
21448480
Journal Information:
Physical Review. A, Vol. 82, Issue 2; Other Information: DOI: 10.1103/PhysRevA.82.022333; (c) 2010 The American Physical Society; ISSN 1050-2947
Country of Publication:
United States
Language:
English

Similar Records

Quantum speedup of classical mixing processes
Journal Article · Mon Oct 15 00:00:00 EDT 2007 · Physical Review. A · OSTI ID:21448480

Quantum random-walk search algorithm
Journal Article · Thu May 01 00:00:00 EDT 2003 · Physical Review. A · OSTI ID:21448480

Efficient quantum circuit implementation of quantum walks
Journal Article · Fri May 15 00:00:00 EDT 2009 · Physical Review. A · OSTI ID:21448480