skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-order elliptically polarized harmonic generation in extended molecules with ultrashort intense bichromatic circularly polarized laser pulses

Journal Article · · Physical Review. A
;  [1]
  1. Laboratoire de Chimie Theorique, Faculte des Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)

Numerical solutions of the time-dependent Schroedinger equation (TDSE) for a two-dimensional H{sub 2}{sup +} molecule excited by a bichromatic ultrashort intense circularly polarized laser pulse with frequencies {omega}{sub 0} and 2{omega}{sub 0} and relative carrier envelope phase {phi} are used to explore the generation of high-order elliptically polarized harmonics as a function of internuclear distance R. Optimal values of {phi} and R for efficient and maximum molecular high-order harmonic generation (MHOHG) are determined from a classical model of collision with neighboring ions and confirmed from the TDSE nonperturbative simulations. Maximum elliptically polarized harmonic energies of I{sub p}+13.5U{sub p} are found, where I{sub p} is the ionization potential and U{sub p}=I{sub 0}/4m{sub e{omega}0}{sup 2} is the ponderomotive energy at intensity I{sub 0} and frequency {omega}{sub 0}. The polarization properties of MHOHG, phase difference {delta}, ellipticity {epsilon}, and orientation angle {phi} are presented as well. The high efficiency of the proposed MHOHG scheme should be useful for production of elliptically polarized attosecond extreme ultraviolet pulses.

OSTI ID:
21437921
Journal Information:
Physical Review. A, Vol. 81, Issue 6; Other Information: DOI: 10.1103/PhysRevA.81.063412; (c) 2010 The American Physical Society; ISSN 1050-2947
Country of Publication:
United States
Language:
English