skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-dimensional reconnection and relaxation of merging spheromak plasmas

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.3492726· OSTI ID:21421232
; ;  [1];  [2]
  1. Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081-1397 (United States)
  2. Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

Plasma relaxation inside a highly conducting cylindrical boundary is studied both experimentally and computationally. Dynamics are initiated by the introduction of two equal helicity spheromaks at either end of the cylinder. In the experiment, dense, high-magnetic-flux spheromaks are injected into the flux conserving volume with magnetized plasma guns. In the simulation, identical spheromaks initially occupy both halves of the cylinder and a perturbation is introduced. Merging commences with a single three-dimensional null-point that moves radially out of the flux conserving volume at velocities up to 0.2 of the reconnection outflow velocity. Relaxation to the minimum energy state occurs in about ten Alfven times. An important conclusion is that even though the dynamical activity is limited to a few modes, this activity is sufficient to promote relaxation to the final, minimum energy state. The dynamical activity appears to conserve magnetic helicity while magnetic energy is converted to flow and heat. The final state arrived at dynamically is identical to that described by C. D. Cothran et al. [Phys. Rev. Lett. 103, 215002 (2009)] using static, eigenvalue analysis.

OSTI ID:
21421232
Journal Information:
Physics of Plasmas, Vol. 17, Issue 10; Other Information: DOI: 10.1063/1.3492726; (c) 2010 American Institute of Physics; ISSN 1070-664X
Country of Publication:
United States
Language:
English