skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microangiography in Living Mice Using Synchrotron Radiation

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.3478201· OSTI ID:21415287
; ; ;  [1];  [1]; ;  [1]; ; ;  [2]
  1. Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030 (China)
  2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai (China)

Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD-1 mice weighing 35-40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X-ray energy of 33.3 keV was used to produce the highest contrast image. Images were acquired every 172 ms by a x-ray camera (Photonic-Science VHR 1.38) with a resolution of 13 {mu}m/pixel. The optimal dose of contrast agent is 100 {mu}l per injection and the injecting rate is 33 {mu}l/sec. The best position for imaging is to have the mouse lay on its right or left side, with ventral side facing the X-ray source. We observed the lenticulostriate artery for the first time in living mice. Our result show that there are 4 to 5 lenticulostriate branches originating from the root of middle cerebral artery in each hemisphere. LSAs have an average diameter of 43{+-}6.8 {mu}m. There were no differences between LSAs from the left and right hemisphere (p<0.05). These results suggest that synchrotron radiation may provide a unique tool for experimental stroke research.

OSTI ID:
21415287
Journal Information:
AIP Conference Proceedings, Vol. 1266, Issue 1; Conference: 6. international conference on medical applications of synchrotron radiation, Melbourne (Australia), 15-18 Feb 2010; Other Information: DOI: 10.1063/1.3478201; (c) 2010 American Institute of Physics; ISSN 0094-243X
Country of Publication:
United States
Language:
English