skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-Gaussianity in the foreground-reduced CMB maps

Journal Article · · Physical Review. D, Particles Fields
 [1];  [1]
  1. Centro Brasileiro de Pesquisas Fisicas, Rua Doctor Xavier Sigaud 150, 22290-180 Rio de Janeiro-RJ (Brazil)

A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) data is crucial not only to discriminate inflationary models but also to test alternative scenarios. Non-Gaussianity offers, therefore, a powerful probe of the physics of the primordial Universe. The extraction of primordial non-Gaussianity is a difficult enterprise since several effects of a nonprimordial nature can produce non-Gaussianity. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early Universe, it is important to employ a range of different statistical tools to quantify and/or constrain its amount in order to have information that may be helpful for identifying its causes. Moreover, different indicators can in principle provide information about distinct forms of non-Gaussianity that can be present in CMB data. Most of the Gaussianity analyses of CMB data have been performed by using part-sky frequency, where the mask is used to deal with the galactic diffuse foreground emission. However, full-sky map seems to be potentially more appropriate to test for Gaussianity of the CMB data. On the other hand, masks can induce bias in some non-Gaussianity analyses. Here we use two recent large-angle non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, to examine the question of non-Gaussianity in the available full-sky five-year and seven-year Wilkinson Microwave Anisotropy Probe (WMAP) maps. We show that these full-sky foreground-reduced maps present a significant deviation from Gaussianity of different levels, which vary with the foreground-reducing procedures. We also make a Gaussianity analysis of the foreground-reduced five-year and seven-year WMAP maps with a KQ75 mask, and compare with the similar analysis performed with the corresponding full-sky foreground-reduced maps. This comparison shows a significant reduction in the levels of non-Gaussianity when the mask is employed, which provides indications on the suitability of the foreground-reduced maps as Gaussian reconstructions of the full-sky CMB.

OSTI ID:
21413415
Journal Information:
Physical Review. D, Particles Fields, Vol. 81, Issue 6; Other Information: DOI: 10.1103/PhysRevD.81.063533; (c) 2010 The American Physical Society; ISSN 0556-2821
Country of Publication:
United States
Language:
English