Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

On integral and finite Fourier transforms of continuous q-Hermite polynomials

Journal Article · · Physics of Atomic Nuclei
 [1]
  1. Universidad Autonoma del Estado de Morelos, Facultad de Ciencias (Mexico)

We give an overview of the remarkably simple transformation properties of the continuous q-Hermite polynomials H{sub n}(x vertical bar q) of Rogers with respect to the classical Fourier integral transform. The behavior of the q-Hermite polynomials under the finite Fourier transform and an explicit form of the q-extended eigenfunctions of the finite Fourier transform, defined in terms of these polynomials, are also discussed.

OSTI ID:
21405936
Journal Information:
Physics of Atomic Nuclei, Journal Name: Physics of Atomic Nuclei Journal Issue: 5 Vol. 72; ISSN 1063-7788; ISSN PANUEO
Country of Publication:
United States
Language:
English

Similar Records

(q,{mu}) and (p,q,{zeta})-exponential functions: Rogers-Szego'' polynomials and Fourier-Gauss transform
Journal Article · Fri Oct 15 00:00:00 EDT 2010 · Journal of Mathematical Physics · OSTI ID:21476585

Lifting q-difference operators for Askey-Wilson polynomials and their weight function
Journal Article · Wed Jun 15 00:00:00 EDT 2011 · Physics of Atomic Nuclei · OSTI ID:22043912

Hermite {sub q}-polynomials and {sub q}-oscillators
Journal Article · Thu Nov 09 23:00:00 EST 1995 · Journal of Mathematical Sciences · OSTI ID:191994