Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Oxidation behaviour of uranium and neptunium in stabilised zirconia

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]; ;  [1];  [2]
  1. European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe (Germany)
  2. Forschungszentrum Karlsruhe, Institut fuer Nukleare Entsorgung (INE), P.O. Box 3640, D-76021 Karlsruhe (Germany)
Yttria stabilised zirconia (YSZ) based (Zr,Y,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions with 6 and 20 mol% actinide were prepared with Y/Zr ratios ranging from 0.2 to 2.0 to investigate uranium and neptunium oxidation behaviour depending on the oxygen vacancies in the defect fluorite lattice. Sintering at 1600 deg. C in Ar/H{sub 2} yields a cubic, fluorite-type structure with U(IV) and Np(IV). Annealing (Zr,Y,U)O{sub 2-x} with Y/Zr=0.2 at 800 deg. C in air results in a tetragonal phase, whereas (Zr,Y,U)O{sub 2-x} with higher Y/Zr ratios and (Zr,Y,Np)O{sub 2-x} retain the cubic structure. XANES and O/M measurements indicate mixed U(V)-U(VI) and Np(IV)-Np(V) oxidation states after oxidation. Based on X-ray diffraction, O/M and EXAFS measurements, different oxidation mechanisms are identified for U- and Np-doped stabilised zirconia. In contrast to U, excess oxygen vacancies are needed to oxidise Np in (Zr,Y,Np)O{sub 2-x} as the oxidation process competes with Zr for oxygen vacancies. As a consequence, U(VI) and Np(V) can only be obtained in stabilised zirconia with Y/Zr=1 but not in YSZ with Y/Zr=0.2. - Graphical abstract: The O/U ratio in oxidised (Zr,Y,U)O{sub 2-x} depends on the Y/U ratio, whereas O/Np in (Zr,Y,Np)O{sub 2-x} correlates with the Y/(Zr+Np) ratio. This indicates that both Zr and Np compete for oxygen vacancies, which hinders the Np oxidation at low Y/Zr ratios. Display Omitted
OSTI ID:
21372426
Journal Information:
Journal of Solid State Chemistry, Journal Name: Journal of Solid State Chemistry Journal Issue: 12 Vol. 182; ISSN 0022-4596; ISSN JSSCBI
Country of Publication:
United States
Language:
English