skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy

Abstract

Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving >=20, >=30, >=40, >=50, and >=60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R{sup 2} = 0.9552). A volume threshold of 30 cm{sup 3} was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CWmore » toxicity correlated with a CW volume of 35 cm{sup 3} receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to <30 cm{sup 3}, if possible, to reduce the risk of toxicity without compromising tumor coverage.« less

Authors:
; ; ; ; ;  [1]; ;  [2];  [1]
  1. University of Virginia, Charlottesville, VA (United States)
  2. University of Colorado Denver, Aurora, CO (United States)
Publication Date:
OSTI Identifier:
21372103
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 76; Journal Issue: 3; Other Information: DOI: 10.1016/j.ijrobp.2009.02.027; PII: S0360-3016(09)00252-1; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CHEST; FRACTURES; HEALTH HAZARDS; LUNGS; PAIN; PLANNING; RADIOTHERAPY; TOXICITY; WALLS; BODY; FAILURES; HAZARDS; MEDICINE; NUCLEAR MEDICINE; ORGANS; RADIOLOGY; RESPIRATORY SYSTEM; SYMPTOMS; THERAPY

Citation Formats

Dunlap, Neal E., Cai, Jing, Biedermann, Gregory B., Yang, Wensha, Benedict, Stanley H., Sheng Ke, Schefter, Tracey E., Kavanagh, Brian D., and Larner, James M., E-mail: jml2p@virginia.ed. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy. United States: N. p., 2010. Web. doi:10.1016/j.ijrobp.2009.02.027.
Dunlap, Neal E., Cai, Jing, Biedermann, Gregory B., Yang, Wensha, Benedict, Stanley H., Sheng Ke, Schefter, Tracey E., Kavanagh, Brian D., & Larner, James M., E-mail: jml2p@virginia.ed. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy. United States. doi:10.1016/j.ijrobp.2009.02.027.
Dunlap, Neal E., Cai, Jing, Biedermann, Gregory B., Yang, Wensha, Benedict, Stanley H., Sheng Ke, Schefter, Tracey E., Kavanagh, Brian D., and Larner, James M., E-mail: jml2p@virginia.ed. 2010. "Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy". United States. doi:10.1016/j.ijrobp.2009.02.027.
@article{osti_21372103,
title = {Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy},
author = {Dunlap, Neal E. and Cai, Jing and Biedermann, Gregory B. and Yang, Wensha and Benedict, Stanley H. and Sheng Ke and Schefter, Tracey E. and Kavanagh, Brian D. and Larner, James M., E-mail: jml2p@virginia.ed},
abstractNote = {Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving >=20, >=30, >=40, >=50, and >=60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R{sup 2} = 0.9552). A volume threshold of 30 cm{sup 3} was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm{sup 3} receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to <30 cm{sup 3}, if possible, to reduce the risk of toxicity without compromising tumor coverage.},
doi = {10.1016/j.ijrobp.2009.02.027},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 3,
volume = 76,
place = {United States},
year = 2010,
month = 3
}
  • Purpose: Chest wall (CW) pain has recently been recognized as an important adverse effect of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC). We developed a dose-volume model to predict the development of this toxicity. Methods and Materials: A total of 126 patients with primary, clinically node-negative NSCLC received three to five fractions of SBRT to doses of 40-60 Gy and were prospectively followed. The dose-absolute volume histograms of two different definitions of the CW as an organ at risk (CW3cm and CW2cm) were examined for all 126 patients. Results: With a median follow-up of 16 months, themore » 2-year estimated actuarial incidence of Grade {>=} 2 CW pain was 39%. The median time to onset of Grade {>=} 2 CW pain (National Cancer Institute Common Terminology Criteria for Adverse Events, Version 3.0) was 9 months. There was no predictive advantage for biologically corrected dose over physical dose. Neither fraction number (p = 0.07) nor prescription dose (p = 0.07) were significantly correlated with the development of Grade {>=} 2 CW pain. Cox Proportional Hazards analysis identified significant correlation with a broad range of dose-volume combinations, with the CW volume receiving 30 Gy (V30) as one of the strongest predictors (p < 0.001). CW2cm consistently enabled better prediction of CW toxicity. When a physical dose of 30 Gy was received by more than 70 cm{sup 3} of CW2cm, there was a significant correlation with Grade {>=} 2 CW pain (p = 0.004). Conclusions: CW toxicity after SBRT is common and long-term follow-up is needed to identify affected patients. A volume of CW {>=} 70 cm{sup 3} receiving 30 Gy is significantly correlated with Grade {>=} 2 CW pain. We are currently applying this constraint at our institution for patients receiving thoracic SBRT. An actuarial atlas of our data is provided as an electronic supplement to facilitate data-sharing and meta-analysis relating to CW pain.« less
  • Purpose: Recent studies with two fractionation schemes predicted that the volume of chest wall receiving >30 Gy (V30) correlated with chest wall pain after stereotactic body radiation therapy (SBRT) to the lung. This study developed a predictive model of chest wall pain incorporating radiobiologic effects, using clinical data from four distinct SBRT fractionation schemes. Methods and Materials: 102 SBRT patients were treated with four different fractionations: 60 Gy in three fractions, 50 Gy in five fractions, 48 Gy in four fractions, and 50 Gy in 10 fractions. To account for radiobiologic effects, a modified equivalent uniform dose (mEUD) model calculatedmore » the dose to the chest wall with volume weighting. For comparison, V30 and maximum point dose were also reported. Using univariable logistic regression, the association of radiation dose and clinical variables with chest wall pain was assessed by uncertainty coefficient (U) and C statistic (C) of receiver operator curve. The significant associations from the univariable model were verified with a multivariable model. Results: 106 lesions in 102 patients with a mean age of 72 were included, with a mean of 25.5 (range, 12-55) months of follow-up. Twenty patients reported chest wall pain at a mean time of 8.1 (95% confidence interval, 6.3-9.8) months after treatment. The mEUD models, V30, and maximum point dose were significant predictors of chest wall pain (p < 0.0005). mEUD improved prediction of chest wall pain compared with V30 (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.11). The mEUD with moderate weighting (a = 5) better predicted chest wall pain than did mEUD without weighting (a = 1) (C = 0.79 vs. 0.77 and U = 0.16 vs. 0.14). Body mass index (BMI) was significantly associated with chest wall pain (p = 0.008). On multivariable analysis, mEUD and BMI remained significant predictors of chest wall pain (p = 0.0003 and 0.03, respectively). Conclusion: mEUD with moderate weighting better predicted chest wall pain than did V30, indicating that a small chest wall volume receiving a high radiation dose is responsible for chest wall pain. Independently of dose to the chest wall, BMI also correlated with chest wall pain.« less
  • Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range,more » 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.« less
  • Purpose: To quantify the frequency of rib fracture and chest wall (CW) pain and identify the dose-volume parameters that predict CW toxicity after stereotactic body radiotherapy (SBRT). Methods and Materials: The records of patients treated with SBRT between 2000 and 2008 were reviewed, and toxicity was scored according to Common Terminology Criteria for Adverse Events v3.0 for pain and rib fracture. Dosimetric data for CW and rib were analyzed and related to the frequency of toxicity. The risks of CW toxicity were then further characterized according to the median effective concentration (EC{sub 50}) dose-response model. Results: A total of 347more » lesions were treated with a median follow-up of 19 months. Frequency of Grade I and higher CW pain and/or fracture for CW vs. non-CW lesions was 21% vs. 4%, respectively (p < 0.0001). A dose of 50 Gy was the cutoff for maximum dose (Dmax) to CW and rib above which there was a significant increase in the frequency of any grade pain and fracture (p = 0.03 and p = 0.025, respectively). Volume of CW receiving 15 Gy - 40 Gy was highly predictive of toxicity (R{sup 2} > 0.9). According to the EC{sub 50} model, 5 cc and 15 cc of CW receiving 40 Gy predict a 10% and 30% risk of CW toxicity, respectively. Conclusion: Adequate tumor coverage remains the primary objective when treating lung or liver lesions with SBRT. To minimize toxicity when treating lesions in close proximity to the CW, Dmax of the CW and/or ribs should remain <50 Gy, and <5 cc of CW should receive {>=}40 Gy.« less
  • Purpose: Stereotactic body radiation therapy (SBRT) is increasingly being used to treat thoracic tumors. We attempted here to identify dose-volume parameters that predict chest wall toxicity (pain and skin reactions) in patients receiving thoracic SBRT. Patients and Methods: We screened a database of patients treated with SBRT between August 2004 and August 2008 to find patients with pulmonary tumors within 2.5 cm of the chest wall. All patients received a total dose of 50 Gy in four daily 12.5-Gy fractions. Toxicity was scored according to the NCI-CTCAE V3.0. Results: Of 360 patients in the database, 265 (268 tumors) had tumorsmore » within <2.5 cm of the chest wall; 104 (39%) developed skin toxicity (any grade); 14 (5%) developed acute pain (any grade), and 45 (17%) developed chronic pain (Grade 1 in 22 cases [49%] and Grade 2 or 3 in 23 cases [51%]). Both skin toxicity and chest wall pain were associated with the V{sub 30}, or volume of the chest wall receiving 30 Gy. Body mass index (BMI) was also strongly associated with the development of chest pain: patients with BMI {>=}29 had almost twice the risk of chronic pain (p = 0.03). Among patients with BMI >29, diabetes mellitus was a significant contributing factor to the development of chest pain. Conclusion: Safe use of SBRT with 50 Gy in four fractions for lesions close to the chest wall requires consideration of the chest wall volume receiving 30 Gy and the patient's BMI and diabetic state.« less