Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Index Distribution of Gaussian Random Matrices

Journal Article · · Physical Review Letters
;  [1]; ;  [2]
  1. Laboratoire de Physique Theorique et Modeles Statistiques (UMR 8626 du CNRS), Universite Paris-Sud, Batiment 100, 91405 Orsay Cedex (France)
  2. Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34014 Trieste (Italy)
We compute analytically, for large N, the probability distribution of the number of positive eigenvalues (the index N{sub +}) of a random NxN matrix belonging to Gaussian orthogonal (beta=1), unitary (beta=2) or symplectic (beta=4) ensembles. The distribution of the fraction of positive eigenvalues c=N{sub +}/N scales, for large N, as P(c,N){approx_equal}exp[-betaN{sup 2}PHI(c)] where the rate function PHI(c), symmetric around c=1/2 and universal (independent of beta), is calculated exactly. The distribution has non-Gaussian tails, but even near its peak at c=1/2 it is not strictly Gaussian due to an unusual logarithmic singularity in the rate function.
OSTI ID:
21370863
Journal Information:
Physical Review Letters, Journal Name: Physical Review Letters Journal Issue: 22 Vol. 103; ISSN 0031-9007; ISSN PRLTAO
Country of Publication:
United States
Language:
English

Similar Records

Large Deviations of Extreme Eigenvalues of Random Matrices
Journal Article · Fri Oct 20 00:00:00 EDT 2006 · Physical Review Letters · OSTI ID:20861003

How many eigenvalues of a Gaussian random matrix are positive?
Journal Article · Fri Apr 15 00:00:00 EDT 2011 · Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics (Print) · OSTI ID:21560206

Wigner surmise for Hermitian and non-Hermitian chiral random matrices
Journal Article · Mon Dec 14 23:00:00 EST 2009 · Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics (Print) · OSTI ID:21347376