skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-pressure synthesis, crystal structure, and structural relationship of the first ytterbium fluoride borate Yb{sub 5}(BO{sub 3}){sub 2}F{sub 9}

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]
  1. Institut fuer Allgemeine, Anorganische und Theoretische Chemie, Leopold-Franzens-Universitaet Innsbruck, Innrain 52a, A-6020 Innsbruck (Austria)

Yb{sub 5}(BO{sub 3}){sub 2}F{sub 9} was synthesized under high-pressure/high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1100 deg. C, representing the first known ytterbium fluoride borate. The compound exhibits isolated BO{sub 3}-groups next to ytterbium cations and fluoride anions, showing a structure closely related to the other known rare-earth fluoride borates RE{sub 3}(BO{sub 3}){sub 2}F{sub 3} (RE=Sm, Eu, Gd) and Gd{sub 2}(BO{sub 3})F{sub 3}. Monoclinic Yb{sub 5}(BO{sub 3}){sub 2}F{sub 9} crystallizes in space group C2/c with the lattice parameters a=2028.2(4) pm, b=602.5(2) pm, c=820.4(2) pm, and beta=100.63(3){sup o} (Z=4). Three different ytterbium cations can be identified in the crystal structure, each coordinated by nine fluoride and oxygen anions. None of the five crystallographically independent fluoride ions is coordinated by boron atoms, solely by trigonally-planar arranged ytterbium cations. In close proximity to the above mentioned compounds RE{sub 3}(BO{sub 3}){sub 2}F{sub 3} (RE=Sm, Eu, Gd) and Gd{sub 2}(BO{sub 3})F{sub 3}, Yb{sub 5}(BO{sub 3}){sub 2}F{sub 9} can be described via alternating layers with the formal compositions 'YbBO{sub 3}' and 'YbF{sub 3}' in the bc-plane. - Graphical abstract: High-pressure/high-temperature synthesis (multianvil technique) led to the first ytterbium fluoride borate Yb{sub 5}(BO{sub 3}){sub 2}F{sub 9}, built up from isolated BO{sub 3}-groups. The compound shows structural relations to the known rare-earth fluoride borates RE{sub 3}(BO{sub 3}){sub 2}F{sub 3} (RE=Sm, Eu, Gd) and Gd{sub 2}(BO{sub 3})F{sub 3}.

OSTI ID:
21370353
Journal Information:
Journal of Solid State Chemistry, Vol. 182, Issue 4; Other Information: DOI: 10.1016/j.jssc.2009.01.023; PII: S0022-4596(09)00028-0; Copyright (c) 2009 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English