Experimental determination of the thermodynamic parameters affecting the adsorption behaviour and dispersion effectiveness of PCE superplasticizers
Journal Article
·
· Cement and Concrete Research
- Chair for Construction Chemicals, Technische Universitaet Muenchen, 85747 Garching (Germany)
For adsorption of three different allylether-based PCE superplasticizers on CaCO{sub 3} surface, the thermodynamic parameters DELTAH, DELTAS and DELTAG were determined experimentally. The GIBBS standard free energy of adsorption DELTAG{sub 0ads}, the standard enthalpy of adsorption DELTAH{sub 0ads} and the standard entropy of adsorption DELTAS{sub 0ads} applying to an unoccupied CaCO{sub 3} surface were obtained via a linear regression of ln K (equilibrium constant) versus 1 / T (VAN'T HOFF plot). Additionally, the thermodynamic parameters characteristic for a CaCO{sub 3} surface loaded already with polymer (isosteric conditions) were determined using a modified CLAUSIUS-CLAPEYRON equation. For all PCE molecules, negative DELTAG values were found, indicating that adsorption of these polymers is energetically favourable and a spontaneous process. Adsorption of PCEs possessing short side chains is mainly instigated by electrostatic attraction and a release of enthalpy. Contrary to this, adsorption of PCEs with long side chains occurs because of a huge gain in entropy. The gain in entropy results from the release of counter ions attached to the carboxylate groups of the polymer backbone and of water molecules and ions adsorbed on the CaCO{sub 3} surface. With increased surface loading, however, DELTAG{sub isosteric} decreases and adsorption ceases when DELTAG becomes 0. The presence of Ca{sup 2+} ions in the pore solution strongly impacts PCE adsorption, due to complexation of carboxylate groups and a reduced anionic charge amount of the molecule. In the presence of Ca{sup 2+}, adsorption of allylether-based PCEs is almost exclusively driven by a gain in entropy. Consequently, PCEs should produce a strong entropic effect upon adsorption to be effective cement dispersants. Molecular architecture, anionic charge density and molecular weight as well as the type of anchor groups present in a superplasticizer determine whether enthalpy or entropy is the dominant force for superplasticizer adsorption.
- OSTI ID:
- 21344759
- Journal Information:
- Cement and Concrete Research, Journal Name: Cement and Concrete Research Journal Issue: 5 Vol. 40; ISSN 0008-8846; ISSN CCNRAI
- Country of Publication:
- United States
- Language:
- English
Similar Records
Effectiveness of PCE superplasticizers in calcined clay blended cements
Multi-method approach to study influence of superplasticizers on cement suspensions
A TEM study on the very early crystallization of C-S-H in the presence of polycarboxylate superplasticizers: Transformation from initial C-S-H globules to nanofoils
Journal Article
·
Mon Mar 15 00:00:00 EDT 2021
· Cement and Concrete Research
·
OSTI ID:23206366
Multi-method approach to study influence of superplasticizers on cement suspensions
Journal Article
·
Sat Oct 15 00:00:00 EDT 2011
· Cement and Concrete Research
·
OSTI ID:21576898
A TEM study on the very early crystallization of C-S-H in the presence of polycarboxylate superplasticizers: Transformation from initial C-S-H globules to nanofoils
Journal Article
·
Sun Apr 15 00:00:00 EDT 2018
· Cement and Concrete Research
·
OSTI ID:22806470
Related Subjects
36 MATERIALS SCIENCE
ADSORPTION
ALKALINE EARTH METAL COMPOUNDS
BUILDING MATERIALS
CALCIUM CARBONATES
CALCIUM COMPOUNDS
CALCIUM IONS
CARBON COMPOUNDS
CARBONATES
CEMENTS
CHARGED PARTICLES
DISPERSIONS
ENERGY
ENTHALPY
ENTROPY
FREE ENERGY
HOMOGENEOUS MIXTURES
IONS
MATERIALS
MIXTURES
OXYGEN COMPOUNDS
PHYSICAL PROPERTIES
PLASTICIZERS
SOLUTIONS
SORPTION
SURFACES
THERMODYNAMIC PROPERTIES
ADSORPTION
ALKALINE EARTH METAL COMPOUNDS
BUILDING MATERIALS
CALCIUM CARBONATES
CALCIUM COMPOUNDS
CALCIUM IONS
CARBON COMPOUNDS
CARBONATES
CEMENTS
CHARGED PARTICLES
DISPERSIONS
ENERGY
ENTHALPY
ENTROPY
FREE ENERGY
HOMOGENEOUS MIXTURES
IONS
MATERIALS
MIXTURES
OXYGEN COMPOUNDS
PHYSICAL PROPERTIES
PLASTICIZERS
SOLUTIONS
SORPTION
SURFACES
THERMODYNAMIC PROPERTIES