skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Decontamination of industrial cyanide-containing water in a solar CPC pilot plant

Journal Article · · Solar Energy
; ; ;  [1]
  1. Grupo IMAES, Department of Chemical Engineering, Escuela Tecnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Avda. Camilo Jose Cela 3, 13071 Ciudad Real (Spain)

The aim of this work was to improve the quality of wastewater effluent coming from an Integrated Gasification Combined-Cycle (IGCC) power station to meet with future environmental legislation. This study examined a homogeneous photocatalytic oxidation process using concentrated solar UV energy (UV/Fe(II)/H{sub 2}O{sub 2}) in a Solar Compound Parabolic Collector (CPC) pilot plant. The efficiency of the process was evaluated by analysis of the oxidation of cyanides and Total Organic Carbon (TOC). A factorial experimental design allowed the determination of the influences of operating variables (initial concentration of H{sub 2}O{sub 2}, oxalic acid and Fe(II) and pH) on the degradation kinetics. Temperature and UV-A solar power were also included in the Neural Network fittings. The pH was maintained at a value >9.5 during cyanide oxidation to avoid the formation of gaseous HCN and later lowered to enhance mineralization. Under the optimum conditions ([H{sub 2}O{sub 2}] = 2000 ppm, [Fe(II)] = 8 ppm, pH = 3.3 after cyanide oxidation, and [(COOH){sub 2}] = 60 ppm), it was possible to degrade 100% of the cyanides and up to 92% of Total Organic Carbon. (author)

OSTI ID:
21328652
Journal Information:
Solar Energy, Vol. 84, Issue 7; Other Information: Elsevier Ltd. All rights reserved; ISSN 0038-092X
Country of Publication:
United States
Language:
English