skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

Journal Article · · Physical Review. D, Particles Fields
 [1];  [1]; ;  [2]
  1. International School for Advanced Studies (SISSA/ISAS) Via Beirut 2-4, 34014 Trieste (Italy) and INFN, Sezione di Trieste (Italy)
  2. Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb (Croatia)

We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawking radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.

OSTI ID:
21325378
Journal Information:
Physical Review. D, Particles Fields, Vol. 80, Issue 8; Other Information: DOI: 10.1103/PhysRevD.80.084034; (c) 2009 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English

Similar Records

The Kerr/CFT correspondence
Journal Article · Tue Dec 15 00:00:00 EST 2009 · Physical Review. D, Particles Fields · OSTI ID:21325378

Extremal black hole/CFT correspondence in (gauged) supergravities
Journal Article · Wed Apr 15 00:00:00 EDT 2009 · Physical Review. D, Particles Fields · OSTI ID:21325378

Toward an effective CFT2 from $ \mathcal{N} $ = 4 super Yang-Mills and aspects of Hawking radiation
Journal Article · Fri Jul 17 00:00:00 EDT 2020 · Journal of High Energy Physics (Online) · OSTI ID:21325378