skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Performance Analysis of the SensorNet's Southeastern Transportation Corridor Pilot Viewer at the Dorchester West Bound Interstate Weigh Station

Conference ·
OSTI ID:21323100
;  [1];  [2]
  1. Applied Research Center, Florida International Univ., Miami, FL (United States)
  2. Oak Ridge National Laboratory, Oak Ridge, TN (United States)

Since the 9-11 attacks, the United States has increased its focus on developing technologies designed to warn us in the event of another attack and to prevent these attacks from happening in the first place. The SensorNet research group at Oak Ridge National Laboratory's (ORNL) Computer Science and Engineering Division is participating in this effort by developing systems to give critical real-time information to federal, state, and local emergency response decision makers. SensorNet has approached this goal by putting together a system with several sensors and programs called the Southeastern Transportation Corridor Pilot project (SETCP). The SETCP utilizes interstate weigh stations not only to weigh the passing trucks but also to check for gamma and neutron radiation inside the truck without the aid of a human in close proximity. The system also collects additional data that help identify the truck (the truck's length, weight, license plate number, and photographs of the truck). The objective of this research work was to characterize and analyze the data collected from the South Carolina weigh station on I-26W and compare it with previous data analysis on the performance of the Tennessee weigh station on I-40E. The purpose was to find patterns in the trucks with radioactive alarms and, regional truck traffic, as well as to find patterns of inconsistency in the system (illogical length measurements of the truck, inaccurate readings and character recognition of the license plate). During a three-month period, radioactive alarms and traffic patterns were identified and characterized by grouping all of the data and making graphs and charts in Microsoft Excel to show the flow of traffic, the type of truck traffic, the number of alarms and other information. Inconsistence patterns were found by analyzing the data, looking for missing or illogical information, and determining how often it happens. The improvements of these inconsistencies were also analyzed after repairs were made to the system. Given the small number of radiation alarms detected, there were no clear patterns found. Further research has to be done in this area; also, the analysis period needs to be extended from three months to a year. For traffic flow patterns, it was found that the truck traffic was heaviest on Monday, Tuesday, and Wednesday. The inconsistencies found and fixed in the system were the illogical length measurements and the inaccurate reading and character recognition of the license plate. During the summer of 2007, a Florida International University (FIU) student supported this research work under the direct supervision of Mr. David Hill at ORNL's Computer Science and Engineering Division. The 10-week student internship was supported by the DOE/FIU Science and Technology Workforce Initiative, an innovative program developed by the US Department of Energy's Environmental Management (DOE-EM) and FIU's Applied Research Center (FIU-ARC) (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9 - 332, Tempe, AZ 85282 (United States)
OSTI ID:
21323100
Report Number(s):
INIS-US-10-WM-08277; TRN: US10V0511064291
Resource Relation:
Conference: WM'08: Waste Management Symposium 2008 - HLW, TRU, LLW/ILW, Mixed, Hazardous Wastes and Environmental Management - Phoenix Rising: Moving Forward in Waste Management, Phoenix, AZ (United States), 24-28 Feb 2008; Other Information: Country of input: France; 2 refs
Country of Publication:
United States
Language:
English