skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reaching site closure for groundwater under multiple regulatory agencies

Abstract

Groundwater at the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant (HNP) has been impacted by both radionuclides and chemical constituents. Furthermore, the cleanup standards and closure requirements for HNP are regulated both by federal and state agencies. The only consistent requirement is the development of a site conceptual model and an understanding of the hydrogeologic conditions that will govern contaminant transport and identify potential receptors. The cleanup criteria to reach site closure for radionuclides is regulated by both the Nuclear Regulatory Commission (NRC) and the Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiological Division. For license termination under the NRC, the total effective dose equivalent (TEDE) for all media can not exceed 25 milli-Rem per year (mRem/yr) plus As Low as Reasonably Achievable (ALARA). The CTDEP has a similar requirement with the TEDE not to exceed 19 mRem/yr plus ALARA. To reach these criteria, derived concentration guideline levels (DCGLs) were developed for radiological exposures from three (3) media components; soil, existing groundwater and future groundwater from left-in place foundations or footings. Based on current conditions, the target dose contribution from existing and future groundwater is not to exceed 2 mRem/yr TEDE. After source (soil) remediationmore » is complete, the NRC requires two (2) years of quarterly monitoring to demonstrate that groundwater quality meets the DCGLs and does not show an upward trend. CYAPCO's NRC License Termination Plan (LTP) specifies a minimum 18-month period of groundwater monitoring, as long as samples are collected during two spring/high water seasons, to verify the efficacy of remedial actions at HNP. In addition to the 19 mRem/yr criteria, the CTDEP also requires groundwater to be in compliance with the Remediation Standards Regulation (RSRs). There are no published criteria for radionuclides in the RSRs, however CTDEP has approved the United States Environmental Protection Agency's (USEPA's) Maximum Contaminant Levels (MCLs) as the clean up standards for individual constituents. After remediation of an identified contamination source, the RSRs require that at least one groundwater monitoring well, hydraulically down-gradient of the remediation area, be sampled to confirm that the remediation has not impacted groundwater quality. After four quarters of groundwater monitoring with results below the MCLs, additional groundwater sampling must continue for up to three years to reach site closure in accordance with the RSRs. The cleanup criteria for chemical constituents, including boron, are regulated by the USEPA under the Resource Conservation and Recovery Act (RCRA) and the CTDEP Bureau of Water Protection and Land Reuse. The USEPA, however, has accepted the CTDEP RSRs as the cleanup criteria for RCRA. Therefore attainment of the CTDEP RSRs is the only set of criteria needed to reach closure, but both agencies retain oversight, interpretation, and closure authority. As stated above, under the RSRs, groundwater must be monitored following a source remediation for a minimum of four quarters. After demonstrating that the remediation was successful, then additional groundwater sampling is required for up to three additional years. However, the number of monitoring wells and frequency of sampling are not defined in the RSRs and must be negotiated with CTDEP. To successfully reach closure, the conceptual site model, groundwater transport mechanisms, and potential receptors must be defined. Once the hydrogeology is understood, a long term groundwater monitoring program can then be coordinated to meet each agencies requirement to both terminate the NRC license and reach site closure under RCRA. (authors)« less

Authors:
 [1];  [2]
  1. MACTEC, Inc., Portland, ME (United States)
  2. Connecticut Yankee Atomic Power Company, East Ham (United States)
Publication Date:
Research Org.:
WM Symposia, 1628 E. Southern Avenue, Suite 9 - 332, Tempe, AZ 85282 (United States)
OSTI Identifier:
21294644
Report Number(s):
INIS-US-09-WM-07085
TRN: US10V0053040834
Resource Type:
Conference
Resource Relation:
Conference: WM'07: 2007 Waste Management Symposium - Global Accomplishments in Environmental and Radioactive Waste Management: Education and Opportunity for the Next Generation of Waste Management Professionals, Tucson, AZ (United States), 25 Feb - 1 Mar 2007; Other Information: Country of input: France
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; CONNECTICUT YANKEE REACTOR; CONTAMINATION; CONTAMINATION REGULATIONS; ENVIRONMENTAL PROTECTION; GROUND WATER; RADIOACTIVE WASTES; REMEDIAL ACTION; SAFETY; STANDARDS; US EPA; US NRC

Citation Formats

Glucksberg, N., and Couture, B.. Reaching site closure for groundwater under multiple regulatory agencies. United States: N. p., 2007. Web.
Glucksberg, N., & Couture, B.. Reaching site closure for groundwater under multiple regulatory agencies. United States.
Glucksberg, N., and Couture, B.. Sun . "Reaching site closure for groundwater under multiple regulatory agencies". United States. doi:.
@article{osti_21294644,
title = {Reaching site closure for groundwater under multiple regulatory agencies},
author = {Glucksberg, N. and Couture, B.},
abstractNote = {Groundwater at the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant (HNP) has been impacted by both radionuclides and chemical constituents. Furthermore, the cleanup standards and closure requirements for HNP are regulated both by federal and state agencies. The only consistent requirement is the development of a site conceptual model and an understanding of the hydrogeologic conditions that will govern contaminant transport and identify potential receptors. The cleanup criteria to reach site closure for radionuclides is regulated by both the Nuclear Regulatory Commission (NRC) and the Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiological Division. For license termination under the NRC, the total effective dose equivalent (TEDE) for all media can not exceed 25 milli-Rem per year (mRem/yr) plus As Low as Reasonably Achievable (ALARA). The CTDEP has a similar requirement with the TEDE not to exceed 19 mRem/yr plus ALARA. To reach these criteria, derived concentration guideline levels (DCGLs) were developed for radiological exposures from three (3) media components; soil, existing groundwater and future groundwater from left-in place foundations or footings. Based on current conditions, the target dose contribution from existing and future groundwater is not to exceed 2 mRem/yr TEDE. After source (soil) remediation is complete, the NRC requires two (2) years of quarterly monitoring to demonstrate that groundwater quality meets the DCGLs and does not show an upward trend. CYAPCO's NRC License Termination Plan (LTP) specifies a minimum 18-month period of groundwater monitoring, as long as samples are collected during two spring/high water seasons, to verify the efficacy of remedial actions at HNP. In addition to the 19 mRem/yr criteria, the CTDEP also requires groundwater to be in compliance with the Remediation Standards Regulation (RSRs). There are no published criteria for radionuclides in the RSRs, however CTDEP has approved the United States Environmental Protection Agency's (USEPA's) Maximum Contaminant Levels (MCLs) as the clean up standards for individual constituents. After remediation of an identified contamination source, the RSRs require that at least one groundwater monitoring well, hydraulically down-gradient of the remediation area, be sampled to confirm that the remediation has not impacted groundwater quality. After four quarters of groundwater monitoring with results below the MCLs, additional groundwater sampling must continue for up to three years to reach site closure in accordance with the RSRs. The cleanup criteria for chemical constituents, including boron, are regulated by the USEPA under the Resource Conservation and Recovery Act (RCRA) and the CTDEP Bureau of Water Protection and Land Reuse. The USEPA, however, has accepted the CTDEP RSRs as the cleanup criteria for RCRA. Therefore attainment of the CTDEP RSRs is the only set of criteria needed to reach closure, but both agencies retain oversight, interpretation, and closure authority. As stated above, under the RSRs, groundwater must be monitored following a source remediation for a minimum of four quarters. After demonstrating that the remediation was successful, then additional groundwater sampling is required for up to three additional years. However, the number of monitoring wells and frequency of sampling are not defined in the RSRs and must be negotiated with CTDEP. To successfully reach closure, the conceptual site model, groundwater transport mechanisms, and potential receptors must be defined. Once the hydrogeology is understood, a long term groundwater monitoring program can then be coordinated to meet each agencies requirement to both terminate the NRC license and reach site closure under RCRA. (authors)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jul 01 00:00:00 EDT 2007},
month = {Sun Jul 01 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Groundwater at the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant (HNP) requires investigation of both radionuclides and chemical constituents in order to achieve closure. Cleanup criteria for groundwater are regulated both by federal and state agencies. These requirements vary in both numerical values as well as the duration of post remediation monitoring. The only consistent requirement is the development of a site conceptual model and an understanding of the hydrogeologic conditions that will govern contaminant transport and identify potential receptors. To successfully reach closure under each agency, it is paramount to understand the different requirements during the planningmore » stages of the investigation. Therefore, the conceptual site model, groundwater transport mechanisms, and potential receptors must be defined. Once the hydrogeology is understood, a long term groundwater program can then be coordinated to meet each regulatory agency requirement to both terminate the NRC license and reach site closure under RCRA. Based on the different criteria, the CTDEP-LR (or RSR criteria) are not only bounding, but also requires the longest duration. As with most decommissioning efforts, regulatory attention is focused on the NRC, however, with the recent industry initiatives based on concern of tritium releases to groundwater at other plants, it is likely that the USEPA and state agencies may continue to drive site investigations. By recognizing these differences, data quality objectives can include all agency requirements, thus minimizing rework or duplicative efforts. CYAPCO intends to complete groundwater monitoring for the NRC and CTDEP-RD by July 2007. However, because shallow remediations are still being conducted, site closure under USEPA and CTDEP-LR is projected to be late 2011.« less
  • The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pitsmore » and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.« less
  • The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevadamore » Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.« less
  • The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and themore » Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators. (authors)« less
  • The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department ofmore » Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)« less