Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction
                            Journal Article
                            ·
                            
                            · AIP Conference Proceedings
                            
                        
                    - Laboratoire d'automatique, CNAM, 21 rue Pinel, 75013 Paris (France)
- IPAL, UMI CNRS 2955, UJF, I2R/A-STAR, NUS, 1 Fusionopolis Way, 21-01 Connexis, 138632 Singapore (Singapore)
- FEMTO-ST-UMR CNRS 6174, ENSMM, UFC, UTBM, 32 Avenue de l'Observatoire, 25044 Besancon (France)
- Faculty of Electric Engineering, Valahia University, Bd. Unirii, nr. 18, 0200, Targoviste (Romania)
- Romanian Academy, Calea Victoriei 125, Sct. 1, Bucuresti (Romania)
In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.
- OSTI ID:
- 21293340
- Journal Information:
- AIP Conference Proceedings, Journal Name: AIP Conference Proceedings Journal Issue: 1 Vol. 1107; ISSN APCPCS; ISSN 0094-243X
- Country of Publication:
- United States
- Language:
- English
Similar Records
                                
                                
                                    
                                        
                                        Fault classification by neural networks and fuzzy logic
                                        
Satisfiability of logic programming based on radial basis function neural networks
Nonlinear wind prediction using a fuzzy modular temporal neural network
                        
                                            Journal Article
                                            ·
                                            Tue Jan 24 23:00:00 EST 1995
                                            · AIP Conference Proceedings
                                            ·
                                            OSTI ID:165141
                                        
                                        
                                        
                                    
                                
                                    
                                        Satisfiability of logic programming based on radial basis function neural networks
                                            Journal Article
                                            ·
                                            Thu Jul 10 00:00:00 EDT 2014
                                            · AIP Conference Proceedings
                                            ·
                                            OSTI ID:22306155
                                        
                                        
                                        
                                    
                                
                                    
                                        Nonlinear wind prediction using a fuzzy modular temporal neural network
                                            Conference
                                            ·
                                            Sat Dec 30 23:00:00 EST 1995
                                            
                                            ·
                                            OSTI ID:269399