Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.3106518· OSTI ID:21293340
 [1];  [2];  [3];  [4];  [5]
  1. Laboratoire d'automatique, CNAM, 21 rue Pinel, 75013 Paris (France)
  2. IPAL, UMI CNRS 2955, UJF, I2R/A-STAR, NUS, 1 Fusionopolis Way, 21-01 Connexis, 138632 Singapore (Singapore)
  3. FEMTO-ST-UMR CNRS 6174, ENSMM, UFC, UTBM, 32 Avenue de l'Observatoire, 25044 Besancon (France)
  4. Faculty of Electric Engineering, Valahia University, Bd. Unirii, nr. 18, 0200, Targoviste (Romania)
  5. Romanian Academy, Calea Victoriei 125, Sct. 1, Bucuresti (Romania)

In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.

OSTI ID:
21293340
Journal Information:
AIP Conference Proceedings, Journal Name: AIP Conference Proceedings Journal Issue: 1 Vol. 1107; ISSN APCPCS; ISSN 0094-243X
Country of Publication:
United States
Language:
English

Similar Records

Fault classification by neural networks and fuzzy logic
Journal Article · Tue Jan 24 23:00:00 EST 1995 · AIP Conference Proceedings · OSTI ID:165141

Satisfiability of logic programming based on radial basis function neural networks
Journal Article · Thu Jul 10 00:00:00 EDT 2014 · AIP Conference Proceedings · OSTI ID:22306155

Nonlinear wind prediction using a fuzzy modular temporal neural network
Conference · Sat Dec 30 23:00:00 EST 1995 · OSTI ID:269399