skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of the dual scintillator sheet and Phoswich detector for simultaneous Alpha- and Beta-rays measurement

Conference ·
OSTI ID:21290805
; ; ; ; ;  [1];  [2]
  1. Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
  2. Kyungil Univ. (Korea, Republic of)

Thin sheet type of ZnS(Ag)/plastic dual scintillator for simultaneous counting of alpha- and beta-particles using a organic and inorganic scintillator widely used in the radiation measurement was manufactured, which could be applicable in the contamination monitoring systems. Counting materials were manufactured by solidification of the scintillator solution which mixed scintillator, solvent, and polymer. Prepared dual scintillator is a counting material which can simultaneously measure the alpha- and beta-particles. It was divided into two parts : an inorganic scintillator layer for alpha-particle detection and an organic one for beta-particle detection. The organic layer was composed of 2,5-diphenyloxazole [PPO] and 1,4,-bis[5-phenyl(oxazolyl)benzene] [POPOP] acting as the scintillator and polysulfone acting as the polymer. The inorganic layer was composed of ZnS(Ag) as scintillator and polysulfone as paste. The ZnS(Ag) scintillator layer was printed onto the organic layer using screen printing method. To estimate the detection ability of the prepared counting materials, alpha-particle emitting nuclide, Am-241, and beta emitting nuclide, Sr/Y-90, were used. The scintillations produced by interaction between radiation and scintillator were measured by photomultiplier tube. The overall counting results reveal that the developed detector is efficient for simultaneous counting of alpha- and beta-particles. For application test, the dual scintillator was fabricated with a Phoswich detector for monitoring the in-pipe alpha and beta contamination. To deploy inside a pipe, two types of Phoswich detectors, sheets and cylinders, were prepared. For in-pipe monitoring, it was found that the cylindrical type was excellent. In the study, polymer composite counting material and Phoswich detectors were prepared using organic and inorganic scintillator for detecting different radiations. In the future, it will be applied to the contamination monitoring system for nuclear decommissioning sites, waste treatment sites, and similar areas. (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9 - 332, Tempe, AZ 85282 (United States)
OSTI ID:
21290805
Report Number(s):
INIS-US-09-WM-07194; TRN: US10V0130038216
Resource Relation:
Conference: WM'07: 2007 Waste Management Symposium - Global Accomplishments in Environmental and Radioactive Waste Management: Education and Opportunity for the Next Generation of Waste Management Professionals, Tucson, AZ (United States), 25 Feb - 1 Mar 2007; Other Information: Country of input: France; 5 refs
Country of Publication:
United States
Language:
English