skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rich n-heptane and diesel combustion in porous media

Journal Article · · Experimental Thermal and Fluid Science
;  [1]
  1. Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

Rich n-heptane and diesel flames in two-layer porous media are experimentally investigated in the context of syngas production. The stable operating points of n-heptane reforming have been determined and the mole fractions of H{sub 2}, CO, CO{sub 2} and light hydrocarbons have been measured in the exhaust gas at an equivalence ratio of 2 for different thermal input values. The reformer performance has been assessed also from the point of view of the heat losses and the mixture homogeneity. The pre-vapouriser produces an approximately uniform vapour-air mixture upstream of the flame front. The range of flow rates for stable flames decreased with increasing equivalence ratio. Heat losses were about 10% of the thermal input at high firing rates. A 77.2% of the equilibrium H{sub 2} was achieved at a flame speed of 0.82 m/s. The same reactor with a different porous matrix for the reforming stage demonstrates diesel reforming to syngas with a conversion efficiency of 77.3% for a flame speed of 0.65 m/s. (author)

OSTI ID:
21285675
Journal Information:
Experimental Thermal and Fluid Science, Vol. 34, Issue 3; Conference: Sixth Mediterranean Combustion Symposium, Corsica (France), 7-11 Jun 2009; Other Information: Elsevier Ltd. All rights reserved; ISSN 0894-1777
Country of Publication:
United States
Language:
English