Simulation of reactive nanolaminates using reduced models: II. Normal propagation
Journal Article
·
· Combustion and Flame
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)
Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)
- OSTI ID:
- 21285631
- Journal Information:
- Combustion and Flame, Journal Name: Combustion and Flame Journal Issue: 3 Vol. 157; ISSN CBFMAO; ISSN 0010-2180
- Country of Publication:
- United States
- Language:
- English
Similar Records
Simulation of reactive nanolaminates using reduced models: III. Ingredients for a general multidimensional formulation
A Fully Explicit Integrator for Modeling Astrophysical Reactive Flows
Journal Article
·
Tue Jun 15 00:00:00 EDT 2010
· Combustion and Flame
·
OSTI ID:21318366
A Fully Explicit Integrator for Modeling Astrophysical Reactive Flows
Journal Article
·
Thu Dec 21 19:00:00 EST 2023
· Research Notes of the AAS
·
OSTI ID:2251549
Related Subjects
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
77 NANOSCIENCE AND NANOTECHNOLOGY
ALUMINIUM
COMPUTERIZED SIMULATION
DIFFUSION
EQUATIONS OF MOTION
FLAME PROPAGATION
IGNITION
LAYERS
NANOSTRUCTURES
NICKEL
RUNGE-KUTTA METHOD
Reactive multilayers
Reduced models
THERMAL CONDUCTIVITY
TRANSIENTS
VELOCITY
77 NANOSCIENCE AND NANOTECHNOLOGY
ALUMINIUM
COMPUTERIZED SIMULATION
DIFFUSION
EQUATIONS OF MOTION
FLAME PROPAGATION
IGNITION
LAYERS
NANOSTRUCTURES
NICKEL
RUNGE-KUTTA METHOD
Reactive multilayers
Reduced models
THERMAL CONDUCTIVITY
TRANSIENTS
VELOCITY