Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Dose-Volume Histogram Parameters and Local Tumor Control in Magnetic Resonance Image-Guided Cervical Cancer Brachytherapy

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1]; ; ; ; ;  [1];  [2];  [1]
  1. Department of Radiotherapy, Medical-University of Vienna, Vienna (Austria)
  2. Department of Radiotherapy and Radiation Oncology, Medical Faculty Carl Gustav Carus, University of Technology, Dresden (Germany)

Purpose: To investigate the value of dose-volume histogram (DVH) parameters for predicting local control in magnetic resonance (MR) image-guided brachytherapy (IGBT) for patients with cervical cancer. Methods and Materials: Our study population consists of 141 patients with cervical cancer (Stages IB-IVA) treated with 45-50 Gy external beam radiotherapy plus four times 7 Gy IGBT with or without cisplatin. Gross tumor volume (GTV), high-risk clinical target volume (HRCTV), and intermediate-risk clinical target volume (IRCTV) were contoured, and DVH parameters (minimum dose delivered to 90% of the volume of interest [D90] and D100) were assessed. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model ({alpha}/{beta} = 10 Gy). Groups were defined for patients with or without local recurrence (LR) in the true pelvis for tumor size at diagnosis (GTV at diagnosis [GTVD] of 2-5 cm (Group 1) or greater than 5 cm (Group 2) and for tumor size response at IGBT (HRCTV) of 2-5 cm (Group 2a) or greater than 5 cm (Group 2b). Results: Eighteen LRs were observed. The most important DVH parameters correlated with LR were the D90 and D100 for HRCTV. Mean D90 and D100 values for HRCTV were 86 {+-} 16 and 65 {+-} 10 Gy, respectively. The D90 for HRCTV greater than 87 Gy resulted in an LR incidence of 4% (3 of 68) compared with 20% (15 of 73) for D90 less than 87 Gy. The effect was most pronounced in the tumor group (Group 2b). Conclusions: We showed an increase in local control in IGBT in patients with cervical cancer with the dose delivered, which can be expressed by the D90 and D100 for HRCTV. Local control rates greater than 95% can be achieved if the D90 (EQD2) for HRCTV is 87 Gy or greater.

OSTI ID:
21281992
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Journal Name: International Journal of Radiation Oncology, Biology and Physics Journal Issue: 1 Vol. 75; ISSN IOBPD3; ISSN 0360-3016
Country of Publication:
United States
Language:
English