skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tokamak profile prediction using direct gyrokinetic and neoclassical simulation

Journal Article · · Physics of Plasmas
DOI:https://doi.org/10.1063/1.3167820· OSTI ID:21277207
; ;  [1];  [2];  [3]
  1. General Atomics, San Diego, California 92186 (United States)
  2. University of California-San Diego, La Jolla, California 92093 (United States)
  3. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

Tokamak transport modeling scenarios, including ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes (local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles). Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] code, for turbulent transport, and the NEO[E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)] code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0{<=}r/a{<=}0.8.

OSTI ID:
21277207
Journal Information:
Physics of Plasmas, Vol. 16, Issue 6; Other Information: DOI: 10.1063/1.3167820; (c) 2009 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 1070-664X
Country of Publication:
United States
Language:
English