skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: DATA PROCESSING, SKY MAPS, AND BASIC RESULTS

Journal Article · · Astrophysical Journal, Supplement Series
; ;  [1]; ; ; ;  [2]; ; ;  [3]; ; ;  [4];  [5];  [6];  [7];  [8];  [9];  [10]
  1. Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
  2. Adnet Systems, Inc., 7515 Mission Dr., Suite A100, Lanham, MD 20706 (United States)
  3. Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States)
  4. Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708 (United States)
  5. Department of Astronomy, University of Texas, Austin, 2511 Speedway, RLM 15.306, Austin, TX 78712 (United States)
  6. Canadian Institute for Theoretical Astrophysics, 60 St. George St, University of Toronto, Toronto, ON M5S 3H8 (Canada)
  7. Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001 (United States)
  8. Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1 (Canada)
  9. Columbia Astrophysics Laboratory, 550 W. 120th St., Mail Code 5247, New York, NY 10027-6902 (United States)
  10. Departments of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637 (United States)

We present new full-sky temperature and polarization maps in five frequency bands from 23 to 94 GHz, based on data from the first five years of the Wilkinson Microwave Anisotropy Probe (WMAP) sky survey. The new maps are consistent with previous maps and are more sensitive. The five-year maps incorporate several improvements in data processing made possible by the additional years of data and by a more complete analysis of the instrument calibration and in-flight beam response. We present several new tests for systematic errors in the polarization data and conclude that W-band polarization data is not yet suitable for cosmological studies, but we suggest directions for further study. We do find that Ka-band data is suitable for use; in conjunction with the additional years of data, the addition of Ka band to the previously used Q- and V-band channels significantly reduces the uncertainty in the optical depth parameter, {tau}. Further scientific results from the five-year data analysis are presented in six companion papers and are summarized in Section 7 of this paper. With the five-year WMAP data, we detect no convincing deviations from the minimal six-parameter {lambda}CDM model: a flat universe dominated by a cosmological constant, with adiabatic and nearly scale-invariant Gaussian fluctuations. Using WMAP data combined with measurements of Type Ia supernovae and Baryon Acoustic Oscillations in the galaxy distribution, we find (68% CL uncertainties): {omega} {sub b} h {sup 2} = 0.02267{sup +0.00058} {sub -0.00059}, {omega} {sub c} h {sup 2} = 0.1131 {+-} 0.0034, {omega}{sub {lambda}} = 0.726 {+-} 0.015, n{sub s} = 0.960 {+-} 0.013, {tau} = 0.084 {+-} 0.016, and {delta}{sub R}{sup 2} = (2.445{+-}0.096)x10{sup -9} at k = 0.002 Mpc{sup -1}. From these we derive {sigma}{sub 8} = 0.812 {+-} 0.026, H {sub 0} = 70.5 {+-} 1.3 km s{sup -1} Mpc{sup -1}, {omega} {sub b} = 0.0456 {+-} 0.0015, {omega} {sub c} = 0.228 {+-} 0.013, {omega} {sub m} h {sup 2} = 0.1358{sup +0.0037} {sub -0.0036}, z {sub reion} = 10.9 {+-} 1.4, and t {sub 0} = 13.72 {+-} 0.12 Gyr. The new limit on the tensor-to-scalar ratio is r < 0.22(95%CL), while the evidence for a running spectral index is insignificant, dn{sub s} /dln k = -0.028 {+-} 0.020 (68% CL). We obtain tight, simultaneous limits on the (constant) dark energy equation of state and the spatial curvature of the universe: -0.14 < 1 + w < 0.12(95%CL) and -0.0179 < {omega} {sub k} < 0.0081(95%CL). The number of relativistic degrees of freedom, expressed in units of the effective number of neutrino species, is found to be N {sub eff} = 4.4 {+-} 1.5 (68% CL), consistent with the standard value of 3.04. Models with N {sub eff} = 0 are disfavored at >99.5% confidence. Finally, new limits on physically motivated primordial non-Gaussianity parameters are -9 < f {sup local} {sub NL} < 111 (95% CL) and -151 < f {sup equil} {sub NL} < 253 (95% CL) for the local and equilateral models, respe0013ctive.

OSTI ID:
21269302
Journal Information:
Astrophysical Journal, Supplement Series, Vol. 180, Issue 2; Other Information: DOI: 10.1088/0067-0049/180/2/225; Country of input: International Atomic Energy Agency (IAEA); ISSN 0067-0049
Country of Publication:
United States
Language:
English