skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Drift instabilities in current sheets with guide field

Abstract

Drift instabilities in current sheets with or without the guide field are investigated with a newly developed improved electrostatic dispersion relation. Traditional (local) theories of lower-hybrid drift instability typically assumes small electron drift speed, and expand the electron distribution function in Taylor series. This approximate treatment is removed in this paper. The resulting formalism is uniformly valid for an arbitrary magnitude of relative ion and electron drift speeds, and is valid for an arbitrary strength of the guide field.

Authors:
 [1];  [2]
  1. IPST, University of Maryland, College Park, Maryland 20742 (United States)
  2. APL, Johns Hopkins University, Laurel, Maryland 20723 (United States)
Publication Date:
OSTI Identifier:
21268930
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 15; Journal Issue: 7; Other Information: DOI: 10.1063/1.2938386; (c) 2008 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; DISPERSION RELATIONS; DISTRIBUTION FUNCTIONS; DRIFT INSTABILITY; ELECTRON DRIFT; ELECTRONS

Citation Formats

Yoon, P. H., and Lui, A. T. Y. Drift instabilities in current sheets with guide field. United States: N. p., 2008. Web. doi:10.1063/1.2938386.
Yoon, P. H., & Lui, A. T. Y. Drift instabilities in current sheets with guide field. United States. doi:10.1063/1.2938386.
Yoon, P. H., and Lui, A. T. Y. Tue . "Drift instabilities in current sheets with guide field". United States. doi:10.1063/1.2938386.
@article{osti_21268930,
title = {Drift instabilities in current sheets with guide field},
author = {Yoon, P. H. and Lui, A. T. Y.},
abstractNote = {Drift instabilities in current sheets with or without the guide field are investigated with a newly developed improved electrostatic dispersion relation. Traditional (local) theories of lower-hybrid drift instability typically assumes small electron drift speed, and expand the electron distribution function in Taylor series. This approximate treatment is removed in this paper. The resulting formalism is uniformly valid for an arbitrary magnitude of relative ion and electron drift speeds, and is valid for an arbitrary strength of the guide field.},
doi = {10.1063/1.2938386},
journal = {Physics of Plasmas},
number = 7,
volume = 15,
place = {United States},
year = {Tue Jul 15 00:00:00 EDT 2008},
month = {Tue Jul 15 00:00:00 EDT 2008}
}
  • Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15,more » 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k{center_dot}B=0 and k{center_dot}{nabla}n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and {nabla}n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by kxB=0 and k{center_dot}{nabla}n=0, rather than being a beam-aligned instability.« less
  • The effect of a guide field on the linear lower-hybrid drift instability (LHDI) in a thin current sheet containing energetic particles is investigated using kinetic theory. It is found that the symmetry properties of the LHD modes are destroyed by the guide field. The LHDI growth rate decreases with the strength of the latter, and the perturbed magnetic field is much higher than that of the guide-field free case.
  • A kinetic electrostatic eigenvalue equation for the lower-hybrid drift instability (LHDI) in a thin Harris current sheet with a guide field is derived based on the gyrokinetic electron and fully kinetic ion(GeFi) description. Three-dimensional nonlocal analyses are carried out to investigate the influence of a guide field on the stabilization of the LHDI by finite parallel wavenumber, k{sub ∥}. Detailed stability properties are first analyzed locally, and then as a nonlocal eigenvalue problem. Our results indicate that at large equilibrium drift velocities, the LHDI is further destabilized by finite k{sub ∥} in the short-wavelength domain. This is demonstrated in amore » local stability analysis and confirmed by the peak in the eigenfunction amplitude. We find the most unstable modes localized at the current sheet edges, and our results agree well with simulations employing the GeFi code developed by Lin et al. [Plasma Phys. Controlled Fusion 47, 657 (2005); Plasma Phys. Controlled Fusion 53, 054013 (2011)].« less
  • We present the first three-dimensional (3D) hybrid simulations of the evolution of ion-scale current sheets, with an investigation of the role of temperature anisotropy and associated kinetic instabilities on the growth of the tearing instability and particle heating. We confirm the ability of the ion cyclotron and firehose instabilities to enhance or suppress reconnection, respectively. The simulations demonstrate the emergence of persistent 3D structures, including patchy reconnection sites and the fast growth of a narrow-band drift-kink instability, which suppresses reconnection for thin current sheets with weak guide fields. Potential observational signatures of the 3D evolution of solar wind current sheetsmore » are also discussed. We conclude that kinetic instabilities, arising from non-Maxwellian ion populations, are significant to the evolution of 3D current sheets, and two-dimensional studies of heating rates by reconnection may therefore over-estimate the ability of thin, ion-scale current sheets to heat the solar wind by reconnection.« less
  • Rapid large-scale magnetic-field dissipation is observed in a full kinetic simulation of cross-field current instabilities in a current sheet even when the thickness of the current sheet is at ion scale. The Kelvin-Helmholtz instability caused by the velocity shear between the current-carrying ions and the cold background ions excites the lower-hybrid drift instability at the edges of the undulated current sheet. We show that the nonlinear coupling between these two instabilities is responsible for the observed rapid dissipation. The simulation result presents a new route for magnetic-field dissipation in an ion-scale current sheet and demonstrates the general significance of nonlinearmore » cross-scale coupling in collisionless plasmas.« less