Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Properties of vanadium-base alloys irradiated in the dynamic helium charging experiment

Technical Report ·
DOI:https://doi.org/10.2172/212524· OSTI ID:212524

One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx} 0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18--31 dpa at 425--600 C in Li-filled capsules in a sodium-cooled fast reactor. This paper presents results of postirradiation examination and tests of microstructure and mechanical properties of V-5Ti, V-3Ti-1Si, V-8Cr-6Ti, and V-4Cr-4Ti (the latter alloy has been identified as the most promising candidate vanadium alloy). Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at > 420 C. However, postirradiation ductilities at < 250 C were higher than those of the non-DHCE specimens (< 0.1 appm helium), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. Ductile-brittle transition behavior of the DHCE specimens was also determined from bend tests and fracture appearance of transmission electron microscopy (TEM) disks and broken tensile specimens. No brittle behavior was observed at temperatures > {minus}150 C in DHCE specimens. Predominantly brittle-cleavage fracture morphologies were observed only at {minus}196 C in some specimens that were irradiated to 31 dpa at 425 C during the DHCE. For the helium generation rates in this experiment ({approx} 0.4--4.2 appm He/dpa), grain-boundary coalescence of helium microcavities was negligible and intergranular fracture was not observed.

Research Organization:
Argonne National Lab., IL (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
212524
Report Number(s):
ANL/ET/CP--89344; CONF-950961--13; ON: DE96008418
Country of Publication:
United States
Language:
English