skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Saturated critical heat flux in a multi-microchannel heat sink fed by a split flow system

Journal Article · · Experimental Thermal and Fluid Science
;  [1];  [2];  [3]
  1. Department of Energetics, Applied Thermofluidynamics and Air Conditioning Systems, FEDERICO II University, p.le Tecchio 80, 80125 Napoli (Italy)
  2. Laboratory of Heat and Mass Transfer (LTCM), Faculty of Engineering (STI), Ecole Polytechnique Federale de Lausanne (EPFL), Station 9, Lausanne CH-1015 (Switzerland)
  3. Engineering Department, Sannio University, Corso Garibaldi 107, Palazzo dell'Aquila Bosco Lucarelli, 82100 Benevento (Italy)

An extensive experimental campaign has been carried out for the measurement of saturated critical heat flux in a multi-microchannel copper heat sink. The heat sink was formed by 29 parallel channels that were 199 {mu}m wide and 756 {mu}m deep. In order to increase the critical heat flux and reduce the two-phase pressure drop, a split flow system was implemented with one central inlet at the middle of the channels and two outlets at either end. The base critical heat flux was measured using three HFC Refrigerants (R134a, R236fa and R245fa) for mass fluxes ranging from 250 to 1500 kg/m{sup 2} s, inlet subcoolings from -25 to -5 K and saturation temperatures from 20 to 50 C. The parametric effects of mass velocity, saturation temperature and inlet subcooling were investigated. The analysis showed that significantly higher CHF was obtainable with the split flow system (one inlet-two outlets) compared to the single inlet-single outlet system, providing also a much lower pressure drop. Notably several existing predictive methods matched the experimental data quite well and quantitatively predicted the benefit of higher CHF of the split flow. (author)

OSTI ID:
21248835
Journal Information:
Experimental Thermal and Fluid Science, Vol. 34, Issue 1; Other Information: Elsevier Ltd. All rights reserved; ISSN 0894-1777
Country of Publication:
United States
Language:
English

Similar Records

Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel
Journal Article · Wed Apr 15 00:00:00 EDT 2009 · Experimental Thermal and Fluid Science · OSTI ID:21248835

Macro-to-microchannel transition in two-phase flow: Part 1 - Two-phase flow patterns and film thickness measurements
Journal Article · Sat Jan 15 00:00:00 EST 2011 · Experimental Thermal and Fluid Science · OSTI ID:21248835

Investigation of saturated critical heat flux in a single, uniformly heated microchannel
Journal Article · Tue Aug 15 00:00:00 EDT 2006 · Experimental Thermal and Fluid Science · OSTI ID:21248835