Ion exchange and dehydration effects on potassium and argon contents of clinoptilolite
Zeolite-rich Miocene tuffs are an important part of the principal hydrochemical barrier to water-borne radionuclide transport from a potential high-level nuclear waste repository at Yucca Mountain, Nevada. The timing of zeolitization is an issue that relates to paleohydrology, permeability, zeolite stability, and unsaturated-zone geochemical processes. Exploratory K/Ar dating of clinoptilolite, the most abundant and widespread zeolite, shows a striking and consistent pattern of increasing apparent ages (2-13 Ma) with depth. Only the isotopic ages from the saturated zone are compatible with geologic evidence suggesting an age >10 Ma for most of the zeolites. Factors that may be responsible for the young apparent ages in the unsaturated zone were investigated. Cation exchange with recharge water and Ar diffusion under unsaturated conditions (processes that may be characteristic of the unsaturated zone) were evaluated experimentally for their effects on K/Ar systematics. Cation exchanging a natural clinoptilolite with Ca-, Cs-, K-, and Na- chloride solutions showed minimal effects on radiogenic Ar content. However, clinoptilolite heated at 200{degrees}C for 16 hours in air lost a significant amount of its radiogenic Ar compared with minimal losses from clinoptilolite heated in water at 100{degrees}C for over 5 months. The preliminary results indicate that Ar loss from incompletely hydrated clinoptilolite may be a major factor contributing to the young apparent ages of clinoptilolite in the unsaturated zone at Yucca Mountain.
- Research Organization:
- Los Alamos National Lab., NM (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 212416
- Report Number(s):
- LA-UR--96-0273; CONF-951155--95; ON: DE96008126
- Country of Publication:
- United States
- Language:
- English
Similar Records
Ion exchange and dehydration experimental studies of clinoptilolite: Implications to zeolite dating
Preliminary assessment of clinoptilolite K/Ar results from Yucca Mountain, Nevada: A potential high-level radioactive waste repository site
Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site
Technical Report
·
Tue Jan 31 23:00:00 EST 1995
·
OSTI ID:25016
Preliminary assessment of clinoptilolite K/Ar results from Yucca Mountain, Nevada: A potential high-level radioactive waste repository site
Conference
·
Sat Feb 29 23:00:00 EST 1992
·
OSTI ID:138403
Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site
Technical Report
·
Sun Oct 31 23:00:00 EST 1993
·
OSTI ID:140598