skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical interaction matrix between reagents in a Purex based process

Conference ·
OSTI ID:21230389
;  [1];  [2]
  1. Shaw AREVA MOX Services, LLC (United States)
  2. Idaho State University/Idaho National Laboratory (United States)

The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague, France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.

Research Organization:
Chemical Sciences Division, Oak Ridge National Laboratory (United States)
OSTI ID:
21230389
Resource Relation:
Conference: ISEC 2008: International Solvent Extraction Conference on Solvent Extraction: Fundamentals to Industrial Applications, Tucson, AZ (United States), 15-19 Sep 2008; Other Information: Country of input: France; 36 refs; Related Information: In: Proceedings of ISEC 2008, International Solvent Extraction Conference - Solvent Extraction: Fundamentals to Industrial Applications, by Moyer, Bruce A. (ed.), 1740 pages.
Country of Publication:
United States
Language:
English