skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurements of OC and EC in coarse particulate matter in the southeastern United States

Journal Article · · Journal of the Air and Waste Management Association
; ; ; ; ; ;  [1]
  1. Atmospheric Research & Analysis, Inc., Cary, NC (United States)

The organic carbon (OC) and elemental carbon (EC) content of filter-based, 24-hr integrated particulate matter with aerodynamic diameters between 2.5 and 10 {mu}m (PM10-2.5) was measured at two urban and two rural locations in the southeastern United States. On average, total carbon (OC + EC) comprised approximately 30% of PM10-2.5 mass at these four sites. Carbonate carbon was measured on a subset of samples from three sites and was found to be undetectable at a rural site in central Alabama, less than 2% of PM10-2.5 at an urban site in Georgia, and less than 10% of PM10-2.5 at an urban-industrial site in Alabama. Manual scanning electron microscopy (SEM) and computer-controlled SEM (CCSEM) along with energy dispersive X-ray spectroscopy (EDS) were used to identify individual carbonaceous particles in a selected subset of samples collected at one rural site and one urban-industrial site in Alabama. CCSEM results showed that biological material (e.g., fungal spores, pollen, and vegetative detritus) accounted for 60-70% of the carbonaceous mass in PM10-2.5 samples with concentrations in the range of 2-16 {mu}g/m{sup 3}. Samples with higher PM10-2.5 concentrations (25-42 {mu}g/m{sup 3}) at the urban-industrial site were found by manual SEM to have significant amounts of unidentified carbonaceous material, likely originating from local industrial activities. Both filter-based OC and EC concentrations and SEM-identified biological material tended to have higher concentrations during warmer months. Upper limits for organic mass (OM) to OC ratios (OM/OC) are estimated for PM10-2.5 samples at 2.1 for urban sites and 2.6-2.7 for rural sites. 40 refs., 12 figs., 5 tabs.

OSTI ID:
21212854
Journal Information:
Journal of the Air and Waste Management Association, Vol. 59, Issue 1; ISSN 1047-3289
Country of Publication:
United States
Language:
English