skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rare earth metal rich magnesium compounds RE{sub 4}NiMg (RE=Y, Pr-Nd, Sm, Gd-Tm, Lu)-Synthesis, structure, and hydrogenation behavior

Journal Article · · Journal of Solid State Chemistry
 [1]; ;  [2];  [2];  [2];  [2]; ;  [1];  [1]
  1. Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany)
  2. CNRS, Universite de Bordeaux, ICMCB, 87 Avenue du Docteur Albert Schweitzer, F-33608 Pessac Cedex (France)

The rare earth metal rich compounds RE{sub 4}NiMg (RE=Y, Pr-Nd, Sm, Gd-Tm, Lu) were synthesized from the elements in sealed tantalum tubes in an induction furnace. All compounds were investigated by X-ray diffraction on powders and single crystals: Gd{sub 4}RhIn type, space group F4-bar 3m, Z=16, a=1367.6(2) pm for Y{sub 4}NiMg, a=1403.7(3) pm for Pr{sub 4}NiMg, a=1400.7(1) pm for Nd{sub 4}NiMg, a=1386.5(2) pm for Sm{sub 4}NiMg, a=1376.1(2) pm for Gd{sub 4}NiMg, a=1362.1(1) pm for Tb{sub 4}NiMg, a=1355.1(2) pm for Dy{sub 4}NiMg, a=1355.2(1) pm for Ho{sub 4}NiMg, a=1354.3(2) pm for Er{sub 4}NiMg, a=1342.9(3) pm for Tm{sub 4}NiMg, and a=1336.7(3) pm for Lu{sub 4}NiMg. The nickel atoms have trigonal prismatic rare earth coordination. These NiRE{sub 6} prisms are condensed via common edges to a three-dimensional network which leaves voids for Mg{sub 4} tetrahedra and the RE1 atoms which show only weak coordination to the nickel atoms. The single crystal data indicate two kinds of solid solutions. The RE1 positions reveal small RE1/Mg mixing and some compounds also show Ni/Mg mixing within the Mg{sub 4} tetrahedra. Y{sub 4}NiMg and Gd{sub 4}NiMg have been tested for hydrogenation. These compounds absorb up to eleven hydrogen atoms per formula unit under a hydrogen pressure of 1 MPa at room temperature. The structure of the metal atoms is maintained with only an increase of the lattice parameters ({delta}V/V{approx}22%) if the absorption is done at T<363 K as at higher temperature a decomposition into REH{sub 2}-REH{sub 3} hydrides occurred. Moreover, the hydrogenation affects drastically the magnetic properties of these intermetallics. For instance, Gd{sub 4}NiMg exhibits an antiferromagnetic behavior below T{sub N}=92 K whereas its hydride Gd{sub 4}NiMgH{sub 11} is paramagnetic down to 1.8 K. - Graphical abstract: The Mg{sub 4} and NiGd{sub 6} units in Gd{sub 4}NiMg and Gd{sub 4}NiMgH{sub x}.

OSTI ID:
21212182
Journal Information:
Journal of Solid State Chemistry, Vol. 182, Issue 2; Other Information: DOI: 10.1016/j.jssc.2008.10.026; PII: S0022-4596(08)00539-2; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English