Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Purex Process Improvements for Pu and NP Control in Total Actinide Recycle Flowsheets

Conference ·
OSTI ID:21210686
; ; ; ; ; ;  [1]
  1. Nexia Solutions Ltd., BNFL, Sellafield, Seascale, CA20 1PG (United Kingdom)

Significant improvements are required in the Purex process to optimise it for Advanced Fuel Cycles. Two key challenges we have identified are, firstly, developing more efficient methods for U/Pu separations especially at elevated Pu concentrations and, secondly, improving recovery, control and routing of Np in a modified Purex process. A series of Purex-like flowsheets for improved Pu separations based on hydroxamic acids and are reported. Purex-like flowsheets have been tested on a glovebox-housed 30-stage miniature centrifugal contactor train. A series of trials have been performed to demonstrate the processing of feeds with varying Pu contents ranging from 7 - 40% by weight. These flowsheets have demonstrated hydroxamic acids are excellent reagents for complexant stripping of Pu being able to achieve high decontamination factors (DF) on both the U and Pu product streams and co - recover Np with Pu. The advantages of a complexant-based approach are shown to be especially relevant when AFC scenarios are considered, where the Pu content of the fuel is expected to b e significantly higher. Recent results towards modifying the Purex process to improve recovery and control of Np in short residence time contactors are reported. Work on the development of chemical and process models to describe the complicated behaviour of Np under primary separation conditions (i.e. the HA extraction contactor) is described. To test the performance of the model a series of experiments were performed including testing of flowsheets on a fume-hood housed miniature centrifugal contactor train. The flowsheet was designed to emulate the conditions of a primar y separations contactor with the Np split between the U-solvent product and aqueous raffinate. In terms of Np routing the process model showed good agreement with flowsheet trial however much further work is required to fully understand this complex system. (authors)

Research Organization:
WM Symposia, Inc., PO Box 13023, Tucson, AZ, 85732-3023 (United States)
OSTI ID:
21210686
Report Number(s):
INIS-US--09-WM-06406
Country of Publication:
United States
Language:
English