An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations
Journal Article
·
· Sbornik. Mathematics
- Moscow Engineering Physics Institute (State University), Moscow (Russian Federation)
Let f-hat{sub c} be the Fourier cosine transform of f. Then, as proved for functions of class L{sup p}(R{sub +}) in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937), the Hardy operator and the Hardy-Littlewood operator can be defined. In the present paper similar equalities are proved for functions of class L{sup p}(R{sub +}), 1<p{<=}2, and the Walsh-Fourier transformation.
- OSTI ID:
- 21202787
- Journal Information:
- Sbornik. Mathematics, Journal Name: Sbornik. Mathematics Journal Issue: 5 Vol. 189; ISSN 1064-5616
- Country of Publication:
- United States
- Language:
- English
Similar Records
Generalized localization for the double trigonometric Fourier series and the Walsh-Fourier series of functions in L log {sup +}L log {sup +} log {sup +}L
Approximation of functions of variable smoothness by Fourier-Legendre sums
Quantitative estimates in Beurling-Helson type theorems
Journal Article
·
Tue Jun 30 00:00:00 EDT 1998
· Sbornik. Mathematics
·
OSTI ID:21202779
Approximation of functions of variable smoothness by Fourier-Legendre sums
Journal Article
·
Fri Jun 30 00:00:00 EDT 2000
· Sbornik. Mathematics
·
OSTI ID:21202934
Quantitative estimates in Beurling-Helson type theorems
Journal Article
·
Thu Feb 10 23:00:00 EST 2011
· Sbornik. Mathematics
·
OSTI ID:21592579