Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations

Journal Article · · Sbornik. Mathematics
 [1]
  1. Moscow Engineering Physics Institute (State University), Moscow (Russian Federation)
Let f-hat{sub c} be the Fourier cosine transform of f. Then, as proved for functions of class L{sup p}(R{sub +}) in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937), the Hardy operator and the Hardy-Littlewood operator can be defined. In the present paper similar equalities are proved for functions of class L{sup p}(R{sub +}), 1<p{<=}2, and the Walsh-Fourier transformation.
OSTI ID:
21202787
Journal Information:
Sbornik. Mathematics, Journal Name: Sbornik. Mathematics Journal Issue: 5 Vol. 189; ISSN 1064-5616
Country of Publication:
United States
Language:
English

Similar Records

Generalized localization for the double trigonometric Fourier series and the Walsh-Fourier series of functions in L log {sup +}L log {sup +} log {sup +}L
Journal Article · Tue Jun 30 00:00:00 EDT 1998 · Sbornik. Mathematics · OSTI ID:21202779

Approximation of functions of variable smoothness by Fourier-Legendre sums
Journal Article · Fri Jun 30 00:00:00 EDT 2000 · Sbornik. Mathematics · OSTI ID:21202934

Quantitative estimates in Beurling-Helson type theorems
Journal Article · Thu Feb 10 23:00:00 EST 2011 · Sbornik. Mathematics · OSTI ID:21592579