skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coulomb excitation at intermediate energies

Journal Article · · Physical Review. C, Nuclear Physics
 [1]
  1. Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

Straight line trajectories are commonly used in semiclassical calculations of the first-order Coulomb excitation cross section at intermediate energies, and simple corrections are often made for the distortion of the trajectories that is caused by the Coulomb field. These approximations are tested by comparing to numerical calculations that use exact Coulomb trajectories. In this paper a model is devised for including relativistic effects in the calculations. It converges at high energies toward the relativistic straight-line trajectory approximation and approaches the non-relativistic Coulomb trajectory calculation at low energies. The model is tested against a number of measurements and analyses that have been performed at beam energies between 30 and 70 MeV/nucleon, primarily of quadrupole excitations. Remarkably good agreement is achieved with the previous analyses, and good agreement is also achieved in the few cases, where the B(E{lambda}) value is known from other methods. The magnitudes of the relativistic and Coulomb distortion effects are discussed.

OSTI ID:
21192120
Journal Information:
Physical Review. C, Nuclear Physics, Vol. 78, Issue 2; Other Information: DOI: 10.1103/PhysRevC.78.024608; (c) 2008 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2813
Country of Publication:
United States
Language:
English

Similar Records

Coulomb excitation at intermediate energies.
Journal Article · Fri Aug 01 00:00:00 EDT 2008 · Phys. Rev. C · OSTI ID:21192120

Low-energy extensions of the eikonal approximation to heavy-ion scattering
Journal Article · Mon Sep 01 00:00:00 EDT 1997 · Physical Review, C · OSTI ID:21192120

Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV
Journal Article · Fri Jul 15 00:00:00 EDT 2011 · Atomic Data and Nuclear Data Tables · OSTI ID:21192120