skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of cadmium in sediments on colonization by benthic marine organisms: Role of interstitial cadmium and acid volatile sulfide in bioavailability

Conference ·
OSTI ID:211906
; ;  [1];  [2];  [3]; ;  [4]
  1. Environmental Protection Agency, Narragansett, RI (United States)
  2. Manhattan College, Riverdale, NY (United States)
  3. TNRCC, Austin, TX (United States)
  4. Univ. of Rhode Island, Narragansett, RI (United States)

The role of interstitial cadmium and acid volatile sulfide (AVS) in controlling the bioavailability of sediment-associated metal was examined using the chronic saltwater benthic colonization test. Sediments were spiked with cadmium to achieve simultaneously extracted metal (SEM)/AVS molar ratios of 0. 0 (control), 0.1, 0.8 and 3.0 in this 118-day test. Oxidation of AVS in the surficial 2.4 cm within two to four weeks resulted in sulfide profiles similar to those occurring naturally in local sediments. In the nominal 0.1 SEM/AVS treatment, measured SEM was always less than AVS. Interstitial cadmium concentrations (< 3--10 {micro}g/L) were below those likely to cause biological effects. No significant biological effects were detected. In the nominal 0.8 SEM/AVS treatment, measured SEM commonly exceeded AVS in the surficial 2.4 cm of sediment. Interstitial cadmium concentrations (24--157 {micro}g/L) were likely of toxicological significance to sensitive species. Shifts were observed in presence/absence of species, and there were fewer macrobenthic polychaetes (Mediomastus ambiseta, Strebloapio benedicti and Podarke obscura) and unidentified meiofaunal nematodes. In the nominal 3.0 SEM/AVS treatment, concentrations of SEM were always greater than AVS throughout the sediment column. Interstitial cadmium ranged from 28,000 to 174,000 {micro}g/L. In addition to the effects above, these sediments were colonized by fewer macrobenthic species, polychaete species and harpacticoids; had lower densities of diatoms; lacked bivalve molluscs and exhibited other impacts. The observed biological responses were consistent with measured SEM/AVS ratios in surficial sediments and interstitial water cadmium concentrations, further supporting their utility in predicting metals bioavailability.

OSTI ID:
211906
Report Number(s):
CONF-9511137-; ISBN 1-880611-03-1; TRN: IM9617%%222
Resource Relation:
Conference: 2. Society of Environmental Toxicology and Chemistry (SETAC) world conference, Vancouver (Canada), 5-9 Nov 1995; Other Information: PBD: 1995; Related Information: Is Part Of Second SETAC world congress (16. annual meeting): Abstract book. Global environmental protection: Science, politics, and common sense; PB: 378 p.
Country of Publication:
United States
Language:
English