Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway
Journal Article
·
· Toxicology and Applied Pharmacology
- Department of Exercise and Nutritional Sciences, University at Buffalo, Buffalo, New York, 14214 (United States)
- Centre Hospitalier de l'Universite de Montreal, 264 Rene Levesque E, Montreal, Quebec, H2X 1P1 (Canada)
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9 (Canada)
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2 (Canada)
Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the glucuronidating capacity of hepatocytes.
- OSTI ID:
- 21180456
- Journal Information:
- Toxicology and Applied Pharmacology, Journal Name: Toxicology and Applied Pharmacology Journal Issue: 3 Vol. 232; ISSN TXAPA9; ISSN 0041-008X
- Country of Publication:
- United States
- Language:
- English
Similar Records
Glucuronide conjugation reduces the cytotoxicity but not the mutagenicity of benzo(a)pyrene in the CHO/HGPRT assay
Isolation and purification of rat liver morphine UDP-glucuronosyltransferase
Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules
Journal Article
·
Sat Dec 31 23:00:00 EST 1983
· Teratog., Carcinog., Mutagen.; (United States)
·
OSTI ID:5877459
Isolation and purification of rat liver morphine UDP-glucuronosyltransferase
Conference
·
Tue Mar 04 23:00:00 EST 1986
· Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States)
·
OSTI ID:6763895
Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules
Journal Article
·
Fri Jul 01 00:00:00 EDT 1988
· American Journal of Physiology; (USA)
·
OSTI ID:6834461