skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Force Balance in Steady Collisionless-Driven Reconnection

Journal Article · · Physical Review Letters
 [1];  [1]
  1. Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

Steady collisionless-driven reconnection in an open system is investigated by means of full-particle simulations. A long thin electron current sheet extends towards the outflow direction when the system relaxes to a steady state. Although the pressure tensor term along the reconnection electric field contributes to the violation of the electron frozen-in condition, a new force balance in the inflow direction is realized between the Lorentz and electrostatic forces, which is quite different from that in Harris equilibrium. The strong electrostatic field is generated through the combined effect of the Hall term and a driving inflow. This new force balance is more evident in the three-dimensional case due to the growth of an instability along the reconnection electric field. It is also found that the normalized charge density is in proportion to the square of the electron Alfven velocity averaged over the electron dissipation region.

OSTI ID:
21179930
Journal Information:
Physical Review Letters, Vol. 101, Issue 21; Other Information: DOI: 10.1103/PhysRevLett.101.215001; (c) 2008 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0031-9007
Country of Publication:
United States
Language:
English