Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Poisson sigma model with branes and hyperelliptic Riemann surfaces

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.2982234· OSTI ID:21175592
 [1]
  1. Departement Mathematik, ETH Zuerich, 8092 Zuerich (Switzerland)

We derive the explicit form of the superpropagators in the presence of general boundary conditions (coisotropic branes) for the Poisson sigma model. This generalizes the results presented by Cattaneo and Felder [''A path integral approach to the Kontsevich quantization formula,'' Commun. Math. Phys. 212, 591 (2000)] and Cattaneo and Felder ['Coisotropic submanifolds in Poisson geometry and branes in the Poisson sigma model', Lett. Math. Phys. 69, 157 (2004)] for Kontsevich's angle function [Kontsevich, M., 'Deformation quantization of Poisson manifolds I', e-print arXiv:hep.th/0101170] used in the deformation quantization program of Poisson manifolds. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P{sub n} with particular ''alternating'' boundary conditions. In the presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero mode contributions.

OSTI ID:
21175592
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 9 Vol. 49; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

Branes in Poisson sigma models
Journal Article · Wed Jul 28 00:00:00 EDT 2010 · AIP Conference Proceedings · OSTI ID:21410744

On the geometric quantization of Poisson manifolds
Journal Article · Sat Nov 30 23:00:00 EST 1991 · Journal of Mathematical Physics (New York); (United States) · OSTI ID:5019794

D-branes, categories and
Journal Article · Sun Jul 01 00:00:00 EDT 2001 · Journal of Mathematical Physics · OSTI ID:40277793