skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks

Journal Article · · Journal of Computational Physics
 [1];  [2]
  1. Department of Aerospace Engineering and Engineering Mechanics, San Diego State University, San Diego, CA 92182 (United States), E-mail: gjacobs@mail.sdsu.edu
  2. Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States), E-mail: wsdon@dam.brown.edu

A high-order particle-source-in-cell (PSIC) algorithm is presented for the computation of the interaction between shocks, small scale structures, and liquid and/or solid particles in high-speed engineering applications. The improved high-order finite difference weighted essentially non-oscillatory (WENO-Z) method for solution of the hyperbolic conservation laws that govern the shocked carrier gas flow, lies at the heart of the algorithm. Finite sized particles are modeled as points and are traced in the Lagrangian frame. The physical coupling of particles in the Lagrangian frame and the gas in the Eulerian frame through momentum and energy exchange, is numerically treated through high-order interpolation and weighing. The centered high-order interpolation of the fluid properties to the particle location is shown to lead to numerical instability in shocked flow. An essentially non-oscillatory interpolation (ENO) scheme is devised for the coupling that improves stability. The ENO based algorithm is shown to be numerically stable and to accurately capture shocks, small flow features and particle dispersion. Both the carrier gas and the particles are updated in time without splitting with a third-order Runge-Kutta TVD method. One and two-dimensional computations of a shock moving into a particle cloud demonstrates the characteristics of the WENO-Z based PSIC method (PSIC/WENO-Z). The PSIC/WENO-Z computations are not only in excellent agreement with the numerical simulations with a third-order Rusanov based PSIC and physical experiments in [V. Boiko, V.P. Kiselev, S.P. Kiselev, A. Papyrin, S. Poplavsky, V. Fomin, Shock wave interaction with a cloud of particles, Shock Waves, 7 (1997) 275-285], but also show a significant improvement in the resolution of small scale structures. In two-dimensional simulations of the Mach 3 shock moving into forty thousand bronze particles arranged in the shape of a rectangle, the long time accuracy of the high-order method is demonstrated. The fifth-order PSIC/WENO-Z method with the fifth-order ENO interpolation scheme improves the small scale structure resolution over the third-order PSIC/WENO-Z method with a second-order central interpolation scheme. Preliminary analysis of the particle interaction with the flow structures shows that sharp particle material arms form on the side of the rectangular shape. The arms initially shield the particles from the accelerated flow behind the shock. A reflected compression wave, however, reshocks the particle arm from the shielded area and mixes the particles.

OSTI ID:
21167754
Journal Information:
Journal of Computational Physics, Vol. 228, Issue 5; Other Information: DOI: 10.1016/j.jcp.2008.10.037; PII: S0021-9991(08)00558-5; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English