skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methanol to olefin Conversion on HSAPO-34 zeolite from periodic density functional theory calculations: a complete cycle of side chain hydrocarbon pool mechanism

Journal Article · · Journal of Physical Chemistry C
DOI:https://doi.org/10.1021/jp810350x· OSTI ID:21162150

For its unique position in the coal chemical industry, the methanol to olefin (MTO) reaction has been a hot topic in zeolite catalysis. Due to the complexities of catalyst structure and reaction networks, many questions such as how the olefin chain is built from methanol remain elusive. On the basis of periodic density functional theory calculations, this work establishes the first complete catalytic cycle for MTO reaction via hexamethylbenzene (HMB) trapped in HSAPO-34 zeolite based on the so-called side chain hydrocarbon pool mechanism. The cycle starts from the methylation of HMB that leads to heptamethylbenzenium ion (heptaMB{sup +}) intermediate. This is then followed by the growth of side chain via repeated deprotonation of benzenium ions and methylation of the exocyclic double bond. Ethene and propene can finally be released from the side ethyl and isopropyl groups of benzenium ions by deprotonation and subsequent protonation steps. We demonstrate that (i) HMB/HSAPO-34 only yields propene as the primary product based on the side chain hydrocarbon pool mechanism and (ii) an indirect proton-shift step mediated by water that is always available in the system is energetically more favorable than the traditionally regarded internal hydrogen-shift step. Finally, the implications of our results toward understanding the effect of acidity of zeolite on MTO activity are also discussed.

OSTI ID:
21162150
Journal Information:
Journal of Physical Chemistry C, Vol. 113, Issue 11; ISSN 1932-7447
Country of Publication:
United States
Language:
English