skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors

Journal Article · · Combustion and Flame
; ;  [1]
  1. Department of Mechanical Engineering, Stanford University, Stanford, CA (United States)

This article presents a chemical mechanism for the high temperature combustion of a wide range of hydrocarbon fuels ranging from methane to iso-octane. The emphasis is placed on developing an accurate model for the formation of soot precursors for realistic fuel surrogates for premixed and diffusion flames. Species like acetylene (C{sub 2}H{sub 2}), propyne (C{sub 3}H{sub 4}), propene (C{sub 3}H{sub 6}), and butadiene (C{sub 4}H{sub 6}) play a major role in the formation of soot as their decomposition leads to the production of radicals involved in the formation of Polycyclic Aromatic Hydrocarbons (PAH) and the further growth of soot particles. A chemical kinetic mechanism is developed to represent the combustion of these molecules and is validated against a series of experimental data sets including laminar burning velocities and ignition delay times. To correctly predict the formation of soot precursors from the combustion of engine relevant fuels, additional species should be considered. One normal alkane (n-heptane), one ramified alkane (iso-octane), and two aromatics (benzene and toluene) were chosen as chemical species representative of the components typically found in these fuels. A sub-mechanism for the combustion of these four species has been added, and the full mechanism has been further validated. Finally, the mechanism is supplemented with a sub-mechanism for the formation of larger PAH molecules up to cyclo[cd]pyrene. Laminar premixed and counterflow diffusion flames are simulated to assess the ability of the mechanism to predict the formation of soot precursors in flames. The final mechanism contains 149 species and 1651 reactions (forward and backward reactions counted separately). The mechanism is available with thermodynamic and transport properties as supplemental material. (author)

OSTI ID:
21147115
Journal Information:
Combustion and Flame, Vol. 156, Issue 3; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English