skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charge exchange and x-ray emission cross sections for multiply charged ions colliding with H{sub 2}O

Abstract

Total and state selective nl-electron capture cross sections are presented for highly charged ions Z=4-10, 14, 18, and 26 colliding with water molecules. The energy range investigated was from 10 eV/amu (v=0.02 a.u.) to 100 keV/amu (v=2 a.u.). An initialization for the 1B1 and 3A1 orbitals of the water molecule is introduced based on the one center expansion of Moccia and compared to our previous studies based on a hydrogenic approximation within the microcanonical ensemble. The Z dependence of the calculated total cross sections is in reasonable agreement with the recent data of Mawhorter et al. [Phys. Rev. A 75, 032704 (2007)] and is improved over previous results. The energy dependence of the n- and l-level populations is investigated. The K-shell x-ray emission cross sections are determined by using the calculated state-selective electron capture results as input and then applying hydrogenic branching and cascading values for the photon emission. Our results compare favorably with experimental data from the KVI-Groningen, Jet Propulsion Laboratory and Lawrence Livermore National Laboratory groups.

Authors:
 [1];  [2]
  1. CONICET and Dto. de Fisica, Universidad Nacional del Sur, 8000 Bahia Blanca (Argentina)
  2. Physics Department, University of Missouri-Rolla, Rolla, Missouri 65401 (United States)
Publication Date:
OSTI Identifier:
21140492
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. A; Journal Volume: 77; Journal Issue: 2; Other Information: DOI: 10.1103/PhysRevA.77.022709; (c) 2008 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; CATIONS; CHARGE EXCHANGE; COMPARATIVE EVALUATIONS; ELECTRON CAPTURE; EMISSION SPECTRA; EV RANGE 10-100; EV RANGE 100-1000; ION-MOLECULE COLLISIONS; K SHELL; KEV RANGE 01-10; KEV RANGE 10-100; LAWRENCE LIVERMORE NATIONAL LABORATORY; MULTICHARGED IONS; OXYGEN; PHOTON EMISSION; TOTAL CROSS SECTIONS; WATER; X RADIATION; X-RAY SPECTRA

Citation Formats

Otranto, S., and Olson, R. E.. Charge exchange and x-ray emission cross sections for multiply charged ions colliding with H{sub 2}O. United States: N. p., 2008. Web. doi:10.1103/PHYSREVA.77.022709.
Otranto, S., & Olson, R. E.. Charge exchange and x-ray emission cross sections for multiply charged ions colliding with H{sub 2}O. United States. doi:10.1103/PHYSREVA.77.022709.
Otranto, S., and Olson, R. E.. 2008. "Charge exchange and x-ray emission cross sections for multiply charged ions colliding with H{sub 2}O". United States. doi:10.1103/PHYSREVA.77.022709.
@article{osti_21140492,
title = {Charge exchange and x-ray emission cross sections for multiply charged ions colliding with H{sub 2}O},
author = {Otranto, S. and Olson, R. E.},
abstractNote = {Total and state selective nl-electron capture cross sections are presented for highly charged ions Z=4-10, 14, 18, and 26 colliding with water molecules. The energy range investigated was from 10 eV/amu (v=0.02 a.u.) to 100 keV/amu (v=2 a.u.). An initialization for the 1B1 and 3A1 orbitals of the water molecule is introduced based on the one center expansion of Moccia and compared to our previous studies based on a hydrogenic approximation within the microcanonical ensemble. The Z dependence of the calculated total cross sections is in reasonable agreement with the recent data of Mawhorter et al. [Phys. Rev. A 75, 032704 (2007)] and is improved over previous results. The energy dependence of the n- and l-level populations is investigated. The K-shell x-ray emission cross sections are determined by using the calculated state-selective electron capture results as input and then applying hydrogenic branching and cascading values for the photon emission. Our results compare favorably with experimental data from the KVI-Groningen, Jet Propulsion Laboratory and Lawrence Livermore National Laboratory groups.},
doi = {10.1103/PHYSREVA.77.022709},
journal = {Physical Review. A},
number = 2,
volume = 77,
place = {United States},
year = 2008,
month = 2
}
  • The classical trajectory Monte Carlo method is used to calculate total and state selective nl-electron capture cross sections for highly charged ions Z = 4-10, 14, 18 and 26 colliding with water. The initialization for the 1B1 and 3A1 orbitals of the water molecule is based on a Slater orbital expansion. The Z-dependence of the calculated total cross sections is in reasonable agreement with recent data. The K-shell x-ray emission cross sections are determined from the calculated state-selective electron capture results.
  • State selective nl-electron capture cross sections are presented for highly charged ions with Z = 6-10 colliding with atoms and molecules. The energy range investigated was from 1 eV/amu (v = 0.006 a.u.) to 100 keV/amu (v =2.0 a.u.). The energy dependence of the l-level populations is investigated. The K-shell x-ray emission cross sections are determined by using the calculated state-selective electron capture results as input and then applying hydrogenic branching and cascading values for the photon emission. A major shift in the line emission from being almost solely Lyman-{alpha} transitions at the highest collisions energies to strong high-n tomore » 1s transitions at the lowest energies is observed. The calculated cross sections are in reasonable accord with measurements made by Greenwood et al, Phys. Rev. A 63, 062707 (2001), using O{sup 8+} and Ne{sup 10+} on various targets at 3 keV/amu. The calculations are also in accord with x-ray emission cross section data obtained on the EBIT machine at LLNL where O{sup 8+} and Ne{sup 10+} high resolution measurements were made at a temperature of 10 eV/amu for a series of targets with varying ionization potentials. The Ne{sup 10+} data clearly shows the contribution from multiple capture followed by Auger autoionization in the line emission spectra. Our calculated line emission cross sections are used to provide an ab initio determination of the soft x-ray spectrum of comet C/Linear 1999 S4 that was observed on the Chandra X-ray Observatory. The calculations show that the spectrum is due to charge exchange of the neutral gases in the comet's coma with the ions of the slow solar wind.« less
  • The CTMC method is used to calculate emission cross sections following charge exchange processes involving highly charged ions of astrophysical interest and typical cometary targets. Comparison is made to experimental data obtained on the EBIT-I machine at Lawrence Livermore National Laboratory LLNL for O{sup 8+} projectiles impinging on different targets at a collision energy of 10 eV/amu. The theoretical cross sections are used together with ion abundances measured by the Advanced Composition Explorer to reproduce cometary spectra. Discrepancies due to different estimated delays of solar wind events between the comet and the Earth-orbiting satellite are discussed.
  • The CTMC method is used to calculate emission cross sections following charge exchange collisions involving highly charged ions of astrophysical interest and typical cometary targets. Comparison is made to experimental data obtained on the EBIT machine at Lawrence Livermore National Laboratory (LLNL) for O{sup 8+} projectiles impinging on different targets at a collision energy of 10 eV/amu. The theoretical cross sections are used together with ion abundances measured by the Advanced Composition Explorer as well as those obtained by a fitting procedure using laboratory emission cross sections in order to reproduce the x-ray spectrum of comet C/LINEAR S4 measured onmore » July 14th 2001.« less
  • State selective nl-electron capture cross sections are presented for highly charged ions with Z=6-10 colliding with atoms and molecules. The energy range investigated was from 1 eV/amu(v=0.006 a.u.)to 100 keV/amu(v=2.0 a.u.). The energy dependence of the l-level populations is investigated. The K shell x-ray emission cross sections are determined by using the calculated state-selective electron capture results as input and then applying hydrogenic branching and cascading values for the photon emission. A major shift in the line emission from being almost solely Lyman-{alpha} transitions at the highest collisions energies to strong high-n to 1s transitions at the lowest energies ismore » observed. The calculated cross sections are in reasonable accord with measurements made by Greenwood et al. [Phys. Rev. A 63, 062707 (2001)], using O{sup 8+} and Ne{sup 10+} on various targets at 3 keV/amu. The calculations are also in accord with x-ray emission cross section data obtained on the EBIT machine at Lawrence Livermore National Laboratory (LLNL) where O{sup 8+} and Ne{sup 10+} high resolution measurements were made at a temperature of 10 eV/amu for a series of targets with varying ionization potentials. The Ne{sup 10+} data clearly shows the contribution from multiple capture followed by Auger autoionization in the line emission spectra. Our calculated line emission cross sections are used to provide an ab initio determination of the soft x-ray spectrum of comet C/Linear 1999 S4 that was observed on the Chandra X-ray Observatory. The calculations show that the spectrum is due to the charge exchange of the neutral gases in the comet's coma with the ions of the slow solar wind.« less