skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrahigh-intensity optical slow-wave structure for direct laser electron acceleration

Journal Article · · Journal of the Optical Society of America. Part B, Optical Physics
; ; ; ;  [1]
  1. Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, College Park, Maryland 20742 (United States)

We report the development of corrugated slow-wave plasma guiding structures with application to quasi-phase-matched direct laser acceleration of charged particles. These structures support guided propagation at intensities up to 2x10{sup 17} W/cm{sup 2}, limited at present by our current laser energy and side leakage. Hydrogen, nitrogen, and argon plasma waveguides up to 1.5 cm in length with a corrugation period as short as 35 {mu}m are generated in extended cryogenic cluster jet flows, with corrugation depth approaching 100%. These structures remove the limitations of diffraction, phase matching, and material damage thresholds and promise to allow high-field acceleration of electrons over many centimeters using relatively small femtosecond lasers. We present simulations that show that a laser pulse power of 1.9 TW should allow an acceleration gradient larger than 80 MV/cm. A modest power of only 30 GW would still allow acceleration gradients in excess of 10 MV/cm.

OSTI ID:
21100327
Journal Information:
Journal of the Optical Society of America. Part B, Optical Physics, Vol. 25, Issue 7; Other Information: DOI: 10.1364/JOSAB.25.00B137; (c) 2008 Optical Society of America; Country of input: International Atomic Energy Agency (IAEA); ISSN 0740-3224
Country of Publication:
United States
Language:
English

Similar Records

Direct Acceleration of Electrons in a Corrugated Plasma Waveguide
Journal Article · Fri May 16 00:00:00 EDT 2008 · Physical Review Letters · OSTI ID:21100327

Acceleration of Electrons in Modulated Plasma Channels with Radially Polarized Laser Pulses
Journal Article · Thu Nov 04 00:00:00 EDT 2010 · AIP Conference Proceedings · OSTI ID:21100327

Ultrahigh-Intensity Optical Slow-Wave Structure
Journal Article · Fri Jul 20 00:00:00 EDT 2007 · Physical Review Letters · OSTI ID:21100327