Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Derivatives of any order of the confluent hypergeometric function {sub 1}F{sub 1}(a,b,z) with respect to the parameter a or b

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.2939395· OSTI ID:21100324
 [1];  [2]
  1. Laboratoire de Physique Moleculaire et des Collisions, Universite Paul Verlaine-Metz, 57078 Metz (France)
  2. Departamento de Fisica, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Cientificas y Tecnicas, 8000 Bahia Blanca, Buenos Aires (Argentina)
The derivatives to any order of the confluent hypergeometric (Kummer) function F={sub 1}F{sub 1}(a,b,z) with respect to the parameter a or b are investigated and expressed in terms of generalizations of multivariable Kampe de Feriet functions. Various properties (reduction formulas, recurrence relations, particular cases, and series and integral representations) of the defined hypergeometric functions are given. Finally, an application to the two-body Coulomb problem is presented: the derivatives of F with respect to a are used to write the scattering wave function as a power series of the Sommerfeld parameter.
OSTI ID:
21100324
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 6 Vol. 49; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

A special asymptotic limit of a Kampe de Feriet hypergeometric function appearing in nonhomogeneous Coulomb problems
Journal Article · Mon Feb 14 23:00:00 EST 2011 · Journal of Mathematical Physics · OSTI ID:21501262

Confluent Heun Equation and Confluent Hypergeometric Equation
Journal Article · Sun Jul 15 00:00:00 EDT 2018 · Journal of Mathematical Sciences · OSTI ID:22774009

Treatment of the two-body Coulomb problem as a short-range potential
Journal Article · Mon Dec 14 23:00:00 EST 2009 · Physical Review. A · OSTI ID:21352361