skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A mechanism of charge transport in electroluminescent structures consisting of porous silicon and single-crystal silicon

Journal Article · · Semiconductors
; ;  [1]
  1. National Academy of Sciences of Ukraine, Lashkarev Institute of Semiconductor Physics (Ukraine)

Electroluminescent structures that emit in the visible region of the spectrum and are based on porous silicon (por-Si) formed on the p-Si substrate electrolytically using an internal current source are fabricated. The photoluminescent and electroluminescent properties, as well as the current-and capacitance-voltage characteristics of the structures are studied. Electroluminescence is observed only if the forward bias voltage is applied to the structure; the electroluminescence mechanism is based on the injection and is related to the radiative recombination of electrons and holes in quantum-dimensional Si nanocrystals. The injection of holes is controlled by the condition of their accumulation in the space-charge region of p-Si and by a comparatively low concentration of electronic states at the por-Si/p-Si interface. The charge transport in por-Si is caused by the direct tunneling of charge carriers between the quantum-mechanical levels, which is ensured by an appreciable number of quantum-dimensional Si nanocrystals. The leakage currents are low as a result of a small variance in the sizes of Si nanocrystals and the absence of comparatively large nanocrystals.

OSTI ID:
21088594
Journal Information:
Semiconductors, Vol. 40, Issue 2; Other Information: DOI: 10.1134/S1063782606020126; Copyright (c) 2006 Nauka/Interperiodica; Article Copyright (c) 2006 Pleiades Publishing, Inc; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7826
Country of Publication:
United States
Language:
English