skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resonant scattering of an X-ray photon by a heavy atom

Journal Article · · Journal of Experimental and Theoretical Physics
 [1]
  1. Rostov State University of Transport Communication (Russian Federation)

The influence of many-body and relativistic effects on the absolute values and shape of the double differential cross section for the resonant scattering of a linearly polarized X-ray photon by a free xenon atom near the K-shell ionization threshold has been theoretically analyzed. The evolution of the spatially extended structure of the scattering cross section to the K{sub {alpha}}{sub ,{beta}} structure of the X-ray spectrum of the xenon atom emission has been demonstrated. The calculations have been performed in the dipole approximation for the anomalous dispersion component of the total inelastic scattering amplitude and in the impulse approximation for the contact component of this amplitude. The contribution of the Rayleigh (elastic) scattering component is taken into account using the methods developed in Hopersky et al., J. Phys. B 30, 5131 (1997). The effects of the radial relaxation of the electron shells, spin-orbit splitting, double excitation/ionization of the atomic ground state, as well as the Auger and radiative decays of the produced main vacancies, are considered. Using the results obtained by Tulkki, Phys. Rev. A 32, 3153 (1985) and Biggs et al., At. Data Nucl. Data Tables 16, 201 (1975), the nonrelativistic Hartree-Fock wavefunctions are changed to the relativistic Dirac-Hartree-Fock wavefunctions of the single-particle scattering states when constructing the process probability amplitude. The calculations are predicting and are in good agreement with the synchrotron experiment on the measurement of the absolute values and shape of the double differential cross section for the resonant scattering of an X-ray photon by a free xenon atom reported by Czerwinski et al., Z. Phys. A 322, 183 (1985)

OSTI ID:
21075709
Journal Information:
Journal of Experimental and Theoretical Physics, Vol. 105, Issue 3; Other Information: DOI: 10.1134/S1063776107090117; Copyright (c) 2007 Nauka/Interperiodica; Article Copyright (c) 2007 Pleiades Publishing, Inc; Country of input: International Atomic Energy Agency (IAEA); ISSN 1063-7761
Country of Publication:
United States
Language:
English