Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach
- Purdue University, West Lafayette, IN 47907 (United States)
- U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)
Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)
- Research Organization:
- The ASME Foundation, Inc., Three Park Avenue, New York, NY 10016-5990 (United States)
- OSTI ID:
- 21072852
- Country of Publication:
- United States
- Language:
- English
Similar Records
Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows
Measurement of void fraction at different flow regimes in vertical upward two-phase flow of cryogenic fluid