skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Total System Performance Assessment Model for the Final Environmental Impact Statement for the Potential High-Level Nuclear Waste Repository at Yucca Mountain

Conference ·
OSTI ID:21064643
; ; ; ;  [1]
  1. Duke Engineering and Services, 526 South Church St., Suite 2500, Charlotte, NC 28202-1904 (United States)

The total-system performance assessment (TSPA) model for the final environmental impact statement (FEIS) for the potential high-level nuclear-waste repository at Yucca Mountain, Nevada was developed from a series of analyses and model studies of the Yucca Mountain site. The U.S. Department of Energy (DOE) has recommended the Yucca Mountain, Nevada site for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. In May 2001, the DOE released the Yucca Mountain Science and Engineering Report (S and ER) for public review and comment. The S and ER summarizes more than 20 years of scientific and engineering studies supporting the site recommendation (SR). Following internal reviews of the S and ER and other documents, the DOE performed supplemental analyses of uncertainty in support of the SR as summarized in the Supplemental Science and Performance Analysis (SSPA) reports. The SSPA (1) provided insights into the impact of new scientific data and improved models and (2) evaluated a range of thermal operating modes and their effect on the predicted performance of a potential repository. The various updated component models for the SSPA resulted in a modified TSPA model, referred to as the supplemental TSPA model or SSPA TSPA model capturing the combined effects of the alternative model representations on system performance. The SSPA TSPA model was the basis for analyses for the FEIS for the Yucca Mountain site. However, after completion of the SSPA, the U.S. Environmental Protection Agency (EPA) released its final radiation-protection standards for the potential repository at Yucca Mountain (40 CFR Part 197). Compliance with the regulation required modification of several of the component models (e.g., the biosphere transport model and the saturated-zone transport model) in order to evaluate repository performance against the new standards. These changes were incorporated into the SSPA TSPA model. The resulting FEIS TSPA model, known as the 'integrated TSPA model', was used to perform the calculations presented in this report. The results of calculations using the FEIS TSPA model under a non-disruptive scenario, show that the potential disposal of commercial and DOE waste at a Yucca Mountain repository would not produce releases to the environment that would exceed the regulatory standards promulgated in the EPA Final Rule 10 CFR 197 and the NRC Final Rule 10 CFR 63 for both individual protection and groundwater protection. The analyses also show that both the high and low-temperature operating modes result in similar mean annual dose to the reasonably maximally exposed individual (RMEI). Further, the analyses show that consideration of intrusive and extrusive igneous events, human intrusion, or inclusion of the potential inventory of all radioactive material in the commercial and DOE inventory would not exceed those published standards. (authors)

Research Organization:
The ASME Foundation, Inc., Three Park Avenue, New York, NY 10016-5990 (United States)
OSTI ID:
21064643
Resource Relation:
Conference: ICONE-10: 10. international conference on nuclear engineering, Arlington - Virginia (United States), 14-18 Apr 2002; Other Information: Country of input: France
Country of Publication:
United States
Language:
English