skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Receipt and Storage Issues at the TMI-2 Irradiated Fuel Storage Installation

Abstract

In less than a year, up to 12 canisters of TMI-2 reactor fuel debris were loaded into each of 28 Dry Storage Containers (DSCs), and placed into interim storage at an Irradiated Spent Fuel Storage Facility (ISFSI) at the Idaho National Engineering and Environmental Laboratory (INEEL). Draining and drying the canisters, loading and welding the DSCs, shipping the DSCs 25 miles, and storing in the ISFSI initially required up to 3 weeks per DSC. Significant time efficiencies were achieved during the early stages, reducing the time to less than one week per DSC. These efficiencies were achieved mostly in canister draining and drying and DSC lid welding, and despite several occurrences that had to be resolved before continuing work. The ISFSI has been operated without issue since, with the exception that license basis monitoring has indicated an unusual pattern of season- and position-dependent hydrogen generation. This paper discusses some of the innovations and storage experiences for the first ISFSI designed for the storage of severely defected fuel. (authors)

Authors:
; ; ; ;  [1]
  1. Bechtel Power Corp (United States)
Publication Date:
Research Org.:
The ASME Foundation, Inc., Three Park Avenue, New York, NY 10016-5990 (United States)
OSTI Identifier:
21064632
Resource Type:
Conference
Resource Relation:
Conference: ICONE-10: 10. international conference on nuclear engineering, Arlington - Virginia (United States), 14-18 Apr 2002; Other Information: Country of input: France
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; CALORIMETRY; CONTAINERS; DRY STORAGE; DRYING; EFFICIENCY; INEEL; INTERSTITIAL HYDROGEN GENERATION; IRRADIATION; REACTOR FUELING; SPENT FUEL STORAGE; SPENT FUELS; WASTE STORAGE; WELDING

Citation Formats

Christensen, Allan B., Custer, Kenneth, Gardner, Rick, Kaylor, James, and Stalnaker, James. Receipt and Storage Issues at the TMI-2 Irradiated Fuel Storage Installation. United States: N. p., 2002. Web.
Christensen, Allan B., Custer, Kenneth, Gardner, Rick, Kaylor, James, & Stalnaker, James. Receipt and Storage Issues at the TMI-2 Irradiated Fuel Storage Installation. United States.
Christensen, Allan B., Custer, Kenneth, Gardner, Rick, Kaylor, James, and Stalnaker, James. Mon . "Receipt and Storage Issues at the TMI-2 Irradiated Fuel Storage Installation". United States. doi:.
@article{osti_21064632,
title = {Receipt and Storage Issues at the TMI-2 Irradiated Fuel Storage Installation},
author = {Christensen, Allan B. and Custer, Kenneth and Gardner, Rick and Kaylor, James and Stalnaker, James},
abstractNote = {In less than a year, up to 12 canisters of TMI-2 reactor fuel debris were loaded into each of 28 Dry Storage Containers (DSCs), and placed into interim storage at an Irradiated Spent Fuel Storage Facility (ISFSI) at the Idaho National Engineering and Environmental Laboratory (INEEL). Draining and drying the canisters, loading and welding the DSCs, shipping the DSCs 25 miles, and storing in the ISFSI initially required up to 3 weeks per DSC. Significant time efficiencies were achieved during the early stages, reducing the time to less than one week per DSC. These efficiencies were achieved mostly in canister draining and drying and DSC lid welding, and despite several occurrences that had to be resolved before continuing work. The ISFSI has been operated without issue since, with the exception that license basis monitoring has indicated an unusual pattern of season- and position-dependent hydrogen generation. This paper discusses some of the innovations and storage experiences for the first ISFSI designed for the storage of severely defected fuel. (authors)},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jul 01 00:00:00 EDT 2002},
month = {Mon Jul 01 00:00:00 EDT 2002}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Probabilistically-based Design Basis Earthquake (DBE) ground motion parameters have been developed for the TMI-2 Independent Spent Fuel Storage Installation (ISFSI) located at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory. The probabilistic seismic hazard at INTEC has been recomputed using ground motion attenuation relationships more appropriate for extensional tectonic regimes. The empirical attenuation relationships used in this analysis were adjusted for extensional tectonic regimes as part of the Yucca Mountain Project. Seismic hazard curves and uniform hazard spectra for rock produced using the revised attenuation relationships result in lower ground motions when compared tomore » the results of the 1996 INEEL site-wide seismic hazard evaluation. The DBE ground motions for rock and soil have been developed to be applicable to the TMI-2 ISFSI and the entire INTEC site by incorporating variations in the rock and soil properties over the INTEC area. The DBE rock and soil ground motions presented in the report are recommended for use in developing final design earthquake parameters. Peer reviewers of this report support this recommendation. Because the Nuclear Regulatory Commission regulations have recently evolved to incorporate probabilistically-based seismic design for independent fuel storage facilities, a deterministic Maximum Credible Earthquake analysis performed for INTEC earlier in this study is also presented in this report.« less
  • This plan addresses the preparation and shipment of core debris from Three Mile Island Unit 2 (TMI-2) to the Idaho National Engineering Laboratory (INEL) and receipt and storage of that core debris. The Manager of the Nuclear Materials Evaluation Programs Division of EG and G Idaho, Inc. will manage two separate but integrated programs, one located at TMI (Part 1) and the other at INEL (Part 2). The Technical Integration Office (at TMI) is responsible for developing and implementing Part 1, TMI-2 Core Shipment Program. The Technical Support Branch (at INEL) is responsible for developing and implementing Part 2, TMI-2more » Core Receipt and Storage. The plan described herein is a revision of a previous document entitled Plan for Shipment, Storage, and Examination of TMI-2 Fuel. This revision was required to delineate changes, primarily in Part 2, Core Activities Program, of the previous document. That part of the earlier document related to core examination was reidentified in mid-FY-1984 as a separate trackable entity entitled Core Sample Acquisition and Examination Project, which is not included here.« less
  • The TMI-2 Core Receipt and Storage Project is funded by the US Department of Energy and managed by the Technical Support Branch of EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). As part of the Core Activities Program, this project will include: (a) preparations for receipt and storage of the Three Mile Island Unit 2 core debris at INEL; and (b) receipt and storage operations. This document outlines procedures; project management; safety, environment, and quality; safeguards and security; deliverables; and cost and schedule for the receipt and storage activities at INEL.
  • Preparations and operations are highlighted for loading and transporting TMI-2 reactor core debris and receiving and storing that material at the Idaho National Engineering Laboratory (INEL). The phases of getting canisters from TMI to INEL are discussed. Lessons learned are indicated and benefits derived are noted.